On Wed, 18 Mar 2020 12:27:11 +0100 SeongJae Park <sjpark@xxxxxxxxxx> wrote: > From: SeongJae Park <sjpark@xxxxxxxxx> > > This commit implements DAMON's basic access check and region based > sampling mechanisms. This change would seems make no sense, mainly > because it is only a part of the DAMON's logics. Following two commits > will make more sense. > > Basic Access Check > ------------------ > > DAMON basically reports what pages are how frequently accessed. Note > that the frequency is not an absolute number of accesses, but a relative > frequency among the pages of the target workloads. > > Users can control the resolution of the reports by setting two time > intervals, ``sampling interval`` and ``aggregation interval``. In > detail, DAMON checks access to each page per ``sampling interval``, > aggregates the results (counts the number of the accesses to each page), > and reports the aggregated results per ``aggregation interval``. For > the access check of each page, DAMON uses the Accessed bits of PTEs. > > This is thus similar to common periodic access checks based access > tracking mechanisms, which overhead is increasing as the size of the > target process grows. > > Region Based Sampling > --------------------- > > To avoid the unbounded increase of the overhead, DAMON groups a number > of adjacent pages that assumed to have same access frequencies into a > region. As long as the assumption (pages in a region have same access > frequencies) is kept, only one page in the region is required to be > checked. Thus, for each ``sampling interval``, DAMON randomly picks one > page in each region and clears its Accessed bit. After one more > ``sampling interval``, DAMON reads the Accessed bit of the page and > increases the access frequency of the region if the bit has set > meanwhile. Therefore, the monitoring overhead is controllable by > setting the number of regions. > > Nonetheless, this scheme cannot preserve the quality of the output if > the assumption is not kept. Following commit will introduce how we can > make the guarantee with best effort. > > Signed-off-by: SeongJae Park <sjpark@xxxxxxxxx> Hi. A few comments inline. I've still not replicated your benchmarks so may well have some more feedback once I've managed that on one of our servers. Thanks, Jonathan > --- > include/linux/damon.h | 24 ++ > mm/damon.c | 553 ++++++++++++++++++++++++++++++++++++++++++ > 2 files changed, 577 insertions(+) > > diff --git a/include/linux/damon.h b/include/linux/damon.h > index 7117bb7e7544..f1945df6e6b4 100644 > --- a/include/linux/damon.h > +++ b/include/linux/damon.h > @@ -11,6 +11,8 @@ > #define _DAMON_H_ > > #include <linux/random.h> > +#include <linux/mutex.h> > +#include <linux/time64.h> > #include <linux/types.h> > > /* Represents a monitoring target region on the virtual address space */ > @@ -29,10 +31,32 @@ struct damon_task { > struct list_head list; > }; > > +/* > + * For each 'sample_interval', DAMON checks whether each region is accessed or > + * not. It aggregates and keeps the access information (number of accesses to > + * each region) for each 'aggr_interval' time. > + * > + * All time intervals are in micro-seconds. > + */ > struct damon_ctx { > + unsigned long sample_interval; > + unsigned long aggr_interval; > + unsigned long min_nr_regions; > + > + struct timespec64 last_aggregation; > + > + struct task_struct *kdamond; > + struct mutex kdamond_lock; > + > struct rnd_state rndseed; > > struct list_head tasks_list; /* 'damon_task' objects */ > }; > > +int damon_set_pids(struct damon_ctx *ctx, unsigned long *pids, ssize_t nr_pids); > +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, > + unsigned long aggr_int, unsigned long min_nr_reg); > +int damon_start(struct damon_ctx *ctx); > +int damon_stop(struct damon_ctx *ctx); > + > #endif > diff --git a/mm/damon.c b/mm/damon.c > index d7e6226ab7f1..018016793555 100644 > --- a/mm/damon.c > +++ b/mm/damon.c > @@ -10,8 +10,14 @@ > #define pr_fmt(fmt) "damon: " fmt > > #include <linux/damon.h> > +#include <linux/delay.h> > +#include <linux/kthread.h> > #include <linux/mm.h> > #include <linux/module.h> > +#include <linux/page_idle.h> > +#include <linux/random.h> > +#include <linux/sched/mm.h> > +#include <linux/sched/task.h> > #include <linux/slab.h> > > #define damon_get_task_struct(t) \ > @@ -171,6 +177,553 @@ static unsigned int nr_damon_regions(struct damon_task *t) > return nr_regions; > } > > +/* > + * Get the mm_struct of the given task > + * > + * Caller should put the mm_struct after use, unless it is NULL. > + * > + * Returns the mm_struct of the task on success, NULL on failure > + */ > +static struct mm_struct *damon_get_mm(struct damon_task *t) > +{ > + struct task_struct *task; > + struct mm_struct *mm; > + > + task = damon_get_task_struct(t); > + if (!task) > + return NULL; > + > + mm = get_task_mm(task); > + put_task_struct(task); > + return mm; > +} > + > +/* > + * Size-evenly split a region into 'nr_pieces' small regions > + * > + * Returns 0 on success, or negative error code otherwise. > + */ > +static int damon_split_region_evenly(struct damon_ctx *ctx, > + struct damon_region *r, unsigned int nr_pieces) > +{ > + unsigned long sz_orig, sz_piece, orig_end; > + struct damon_region *piece = NULL, *next; > + unsigned long start; > + > + if (!r || !nr_pieces) > + return -EINVAL; > + > + orig_end = r->vm_end; > + sz_orig = r->vm_end - r->vm_start; > + sz_piece = sz_orig / nr_pieces; > + > + if (!sz_piece) > + return -EINVAL; > + > + r->vm_end = r->vm_start + sz_piece; > + next = damon_next_region(r); > + for (start = r->vm_end; start + sz_piece <= orig_end; > + start += sz_piece) { > + piece = damon_new_region(ctx, start, start + sz_piece); piece may be n > + damon_insert_region(piece, r, next); > + r = piece; > + } > + /* complement last region for possible rounding error */ > + if (piece) > + piece->vm_end = orig_end; Update the sampling address to ensure it's in the region? > + > + return 0; > +} > + > +struct region { > + unsigned long start; > + unsigned long end; > +}; > + > +static unsigned long sz_region(struct region *r) > +{ > + return r->end - r->start; > +} > + > +static void swap_regions(struct region *r1, struct region *r2) > +{ > + struct region tmp; > + > + tmp = *r1; > + *r1 = *r2; > + *r2 = tmp; > +} > + > +/* > + * Find the three regions in an address space > + * > + * vma the head vma of the target address space > + * regions an array of three 'struct region's that results will be saved > + * > + * This function receives an address space and finds three regions in it which > + * separated by the two biggest unmapped regions in the space. Please refer to > + * below comments of 'damon_init_regions_of()' function to know why this is > + * necessary. > + * > + * Returns 0 if success, or negative error code otherwise. > + */ > +static int damon_three_regions_in_vmas(struct vm_area_struct *vma, > + struct region regions[3]) > +{ > + struct region gap = {0,}, first_gap = {0,}, second_gap = {0,}; > + struct vm_area_struct *last_vma = NULL; > + unsigned long start = 0; > + > + /* Find two biggest gaps so that first_gap > second_gap > others */ > + for (; vma; vma = vma->vm_next) { > + if (!last_vma) { > + start = vma->vm_start; > + last_vma = vma; > + continue; > + } > + gap.start = last_vma->vm_end; > + gap.end = vma->vm_start; > + if (sz_region(&gap) > sz_region(&second_gap)) { > + swap_regions(&gap, &second_gap); > + if (sz_region(&second_gap) > sz_region(&first_gap)) > + swap_regions(&second_gap, &first_gap); > + } > + last_vma = vma; > + } > + > + if (!sz_region(&second_gap) || !sz_region(&first_gap)) > + return -EINVAL; > + > + /* Sort the two biggest gaps by address */ > + if (first_gap.start > second_gap.start) > + swap_regions(&first_gap, &second_gap); > + > + /* Store the result */ > + regions[0].start = start; > + regions[0].end = first_gap.start; > + regions[1].start = first_gap.end; > + regions[1].end = second_gap.start; > + regions[2].start = second_gap.end; > + regions[2].end = last_vma->vm_end; > + > + return 0; > +} > + > +/* > + * Get the three regions in the given task > + * > + * Returns 0 on success, negative error code otherwise. > + */ > +static int damon_three_regions_of(struct damon_task *t, > + struct region regions[3]) > +{ > + struct mm_struct *mm; > + int rc; > + > + mm = damon_get_mm(t); > + if (!mm) > + return -EINVAL; > + > + down_read(&mm->mmap_sem); > + rc = damon_three_regions_in_vmas(mm->mmap, regions); > + up_read(&mm->mmap_sem); > + > + mmput(mm); > + return rc; > +} > + > +/* > + * Initialize the monitoring target regions for the given task > + * > + * t the given target task > + * > + * Because only a number of small portions of the entire address space > + * is acutally mapped to the memory and accessed, monitoring the unmapped > + * regions is wasteful. That said, because we can deal with small noises, > + * tracking every mapping is not strictly required but could even incur a high > + * overhead if the mapping frequently changes or the number of mappings is > + * high. Nonetheless, this may seems very weird. DAMON's dynamic regions > + * adjustment mechanism, which will be implemented with following commit will > + * make this more sense. > + * > + * For the reason, we convert the complex mappings to three distinct regions > + * that cover every mapped areas of the address space. Also the two gaps > + * between the three regions are the two biggest unmapped areas in the given > + * address space. In detail, this function first identifies the start and the > + * end of the mappings and the two biggest unmapped areas of the address space. > + * Then, it constructs the three regions as below: > + * > + * [mappings[0]->start, big_two_unmapped_areas[0]->start) > + * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) > + * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) > + * > + * As usual memory map of processes is as below, the gap between the heap and > + * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed > + * region and the stack will be two biggest unmapped regions. Because these > + * gaps are exceptionally huge areas in usual address space, excluding these > + * two biggest unmapped regions will be sufficient to make a trade-off. > + * > + * <heap> > + * <BIG UNMAPPED REGION 1> > + * <uppermost mmap()-ed region> > + * (other mmap()-ed regions and small unmapped regions) > + * <lowermost mmap()-ed region> > + * <BIG UNMAPPED REGION 2> > + * <stack> > + */ > +static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t) > +{ > + struct damon_region *r; > + struct region regions[3]; > + int i; > + > + if (damon_three_regions_of(t, regions)) { > + pr_err("Failed to get three regions of task %lu\n", t->pid); > + return; > + } > + > + /* Set the initial three regions of the task */ > + for (i = 0; i < 3; i++) { > + r = damon_new_region(c, regions[i].start, regions[i].end); > + damon_add_region(r, t); > + } > + > + /* Split the middle region into 'min_nr_regions - 2' regions */ > + r = damon_nth_region_of(t, 1); > + if (damon_split_region_evenly(c, r, c->min_nr_regions - 2)) > + pr_warn("Init middle region failed to be split\n"); > +} > + > +/* Initialize '->regions_list' of every task */ > +static void kdamond_init_regions(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + > + damon_for_each_task(ctx, t) > + damon_init_regions_of(ctx, t); > +} > + > +static bool damon_pte_pmd_young(pte_t *pte, pmd_t *pmd) > +{ > + if (pte && pte_young(*pte)) > + return true; > +#ifdef CONFIG_TRANSPARENT_HUGEPAGE > + if (pmd && pmd_young(*pmd)) > + return true; > +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ > + return false; > +} > + > +static void damon_pte_pmd_mkold(pte_t *pte, pmd_t *pmd) > +{ > + if (pte) { > + if (pte_young(*pte)) { > + clear_page_idle(pte_page(*pte)); > + set_page_young(pte_page(*pte)); > + } > + *pte = pte_mkold(*pte); > + return; > + } > +#ifdef CONFIG_TRANSPARENT_HUGEPAGE > + if (pmd) { > + if (pmd_young(*pmd)) { > + clear_page_idle(pmd_page(*pmd)); > + set_page_young(pmd_page(*pmd)); > + } > + *pmd = pmd_mkold(*pmd); > + } > +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ No need to flush the TLBs? > +} > + > +/* > + * Check whether the region accessed and prepare for next check > + * > + * mm 'mm_struct' for the given virtual address space > + * r the region to be checked > + */ > +static void kdamond_check_access(struct damon_ctx *ctx, > + struct mm_struct *mm, struct damon_region *r) > +{ > + static struct mm_struct *last_mm; > + static unsigned long last_addr; > + static int last_page_sz = PAGE_SIZE; > + static bool last_accessed; > + > + pte_t *pte = NULL; > + pmd_t *pmd = NULL; > + spinlock_t *ptl; > + > + /* If the region is in the last checked page, reuse the result */ > + if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == > + ALIGN_DOWN(r->sampling_addr, last_page_sz))) { > + if (last_accessed) > + r->nr_accesses++; > + return; > + } > + > + if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl)) > + goto prepare_next_check; > + > + /* Read the page table access bit of the page */ > + if (damon_pte_pmd_young(pte, pmd)) { > + last_accessed = true; > + r->nr_accesses++; > + } > + spin_unlock(ptl); > + > +prepare_next_check: > + last_mm = mm; > + last_addr = r->sampling_addr; > +#ifdef CONFIG_TRANSPARENT_HUGEPAGE > + last_page_sz = pte ? PAGE_SIZE : ((1UL) << HPAGE_PMD_SHIFT); > +#endif > + > + r->sampling_addr = damon_rand(ctx, r->vm_start, r->vm_end); > + pte = NULL, pmd = NULL; > + if (follow_pte_pmd(mm, r->sampling_addr, NULL, &pte, &pmd, &ptl)) > + return; > + > + damon_pte_pmd_mkold(pte, pmd); > + spin_unlock(ptl); > +} > + > +/* > + * damon_check_reset_time_interval() - Check if a time interval is elapsed. > + * @baseline: the time to check whether the interval has elapsed since > + * @interval: the time interval (microseconds) > + * > + * See whether the given time interval has passed since the given baseline > + * time. If so, it also updates the baseline to current time for next check. > + * > + * Return: true if the time interval has passed, or false otherwise. > + */ > +static bool damon_check_reset_time_interval(struct timespec64 *baseline, > + unsigned long interval) > +{ > + struct timespec64 now; > + > + ktime_get_coarse_ts64(&now); > + if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < > + interval * 1000) > + return false; > + *baseline = now; > + return true; > +} > + > +/* > + * Check whether it is time to flush the aggregated information > + */ > +static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) > +{ > + return damon_check_reset_time_interval(&ctx->last_aggregation, > + ctx->aggr_interval); > +} > + > +/* > + * Reset the aggregated monitoring results > + */ > +static void kdamond_reset_aggregated(struct damon_ctx *c) > +{ > + struct damon_task *t; > + struct damon_region *r; > + > + damon_for_each_task(c, t) { > + damon_for_each_region(r, t) > + r->nr_accesses = 0; > + } > +} > + > +/* > + * Check whether current monitoring should be stopped > + * > + * If users asked to stop, need stop. Even though no user has asked to stop, > + * need stop if every target task has dead. > + * > + * Returns true if need to stop current monitoring. > + */ > +static bool kdamond_need_stop(struct damon_ctx *ctx) > +{ > + struct damon_task *t; > + struct task_struct *task; > + bool stop; > + > + stop = kthread_should_stop(); > + if (stop) > + return true; > + > + damon_for_each_task(ctx, t) { > + task = damon_get_task_struct(t); > + if (task) { > + put_task_struct(task); > + return false; > + } > + } > + > + return true; > +} > + > +/* > + * The monitoring daemon that runs as a kernel thread > + */ > +static int kdamond_fn(void *data) > +{ > + struct damon_ctx *ctx = data; > + struct damon_task *t; > + struct damon_region *r, *next; > + struct mm_struct *mm; > + > + pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); > + kdamond_init_regions(ctx); We haven't called mkold on the initial regions so first check will get us fairly random state. > + while (!kdamond_need_stop(ctx)) { > + damon_for_each_task(ctx, t) { > + mm = damon_get_mm(t); > + if (!mm) > + continue; > + damon_for_each_region(r, t) > + kdamond_check_access(ctx, mm, r); > + mmput(mm); > + } > + > + if (kdamond_aggregate_interval_passed(ctx)) > + kdamond_reset_aggregated(ctx); > + > + usleep_range(ctx->sample_interval, ctx->sample_interval + 1); > + } > + damon_for_each_task(ctx, t) { > + damon_for_each_region_safe(r, next, t) > + damon_destroy_region(r); > + } > + pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); > + mutex_lock(&ctx->kdamond_lock); > + ctx->kdamond = NULL; > + mutex_unlock(&ctx->kdamond_lock); > + > + return 0; > +} > + > +/* > + * Controller functions > + */ > + > +static bool damon_kdamond_running(struct damon_ctx *ctx) > +{ > + bool running; > + > + mutex_lock(&ctx->kdamond_lock); > + running = ctx->kdamond != NULL; > + mutex_unlock(&ctx->kdamond_lock); > + > + return running; > +} > + > +/* > + * Start or stop the kdamond > + * > + * Returns 0 if success, negative error code otherwise. > + */ > +static int damon_turn_kdamond(struct damon_ctx *ctx, bool on) > +{ > + int err = -EBUSY; > + > + mutex_lock(&ctx->kdamond_lock); > + if (!ctx->kdamond && on) { Given there is very little shared code between on and off, I would suggest just splitting it into two functions. > + err = 0; > + ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond"); > + if (IS_ERR(ctx->kdamond)) > + err = PTR_ERR(ctx->kdamond); > + } else if (ctx->kdamond && !on) { > + mutex_unlock(&ctx->kdamond_lock); > + kthread_stop(ctx->kdamond); > + while (damon_kdamond_running(ctx)) > + usleep_range(ctx->sample_interval, > + ctx->sample_interval * 2); > + return 0; > + } > + mutex_unlock(&ctx->kdamond_lock); > + > + return err; > +} > + > +/* > + * damon_start() - Starts monitoring with given context. > + * @ctx: monitoring context > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_start(struct damon_ctx *ctx) > +{ > + return damon_turn_kdamond(ctx, true); > +} > + > +/* > + * damon_stop() - Stops monitoring of given context. > + * @ctx: monitoring context > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_stop(struct damon_ctx *ctx) > +{ > + return damon_turn_kdamond(ctx, false); > +} > + > +/* > + * damon_set_pids() - Set monitoring target processes. > + * @ctx: monitoring context > + * @pids: array of target processes pids > + * @nr_pids: number of entries in @pids > + * > + * This function should not be called while the kdamond is running. > + * > + * Return: 0 on usccess, negative error code otherwise. > + */ > +int damon_set_pids(struct damon_ctx *ctx, unsigned long *pids, ssize_t nr_pids) > +{ > + ssize_t i; > + struct damon_task *t, *next; > + > + damon_for_each_task_safe(ctx, t, next) > + damon_destroy_task(t); > + > + for (i = 0; i < nr_pids; i++) { > + t = damon_new_task(pids[i]); > + if (!t) { > + pr_err("Failed to alloc damon_task\n"); > + return -ENOMEM; > + } > + damon_add_task(ctx, t); > + } > + > + return 0; > +} > + > +/* Why not make these actual kernel-doc? That way you can use the kernel-doc scripts to sanity check them. /** > + * damon_set_attrs() - Set attributes for the monitoring. > + * @ctx: monitoring context > + * @sample_int: time interval between samplings > + * @aggr_int: time interval between aggregations > + * @min_nr_reg: minimal number of regions > + * > + * This function should not be called while the kdamond is running. > + * Every time interval is in micro-seconds. > + * > + * Return: 0 on success, negative error code otherwise. > + */ > +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, > + unsigned long aggr_int, unsigned long min_nr_reg) > +{ > + if (min_nr_reg < 3) { > + pr_err("min_nr_regions (%lu) should be bigger than 2\n", > + min_nr_reg); > + return -EINVAL; > + } > + > + ctx->sample_interval = sample_int; > + ctx->aggr_interval = aggr_int; > + ctx->min_nr_regions = min_nr_reg; > + > + return 0; > +} > + > static int __init damon_init(void) > { > return 0;