Hello, Michal! On Tue, Mar 10, 2020 at 09:45:44AM +0100, Michal Hocko wrote: > [Cc Mike as hugetlb maintainer and keeping the full context for his > reference] Thanks! > > On Mon 09-03-20 17:25:24, Roman Gushchin wrote: > > Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation > > at runtime") has added the run-time allocation of gigantic pages. However > > it actually works only at early stages of the system loading, when > > the majority of memory is free. After some time the memory gets > > fragmented by non-movable pages, so the chances to find a contiguous > > 1 GB block are getting close to zero. Even dropping caches manually > > doesn't help a lot. > > > > At large scale rebooting servers in order to allocate gigantic hugepages > > is quite expensive and complex. At the same time keeping some constant > > percentage of memory in reserved hugepages even if the workload isn't > > using it is a big waste: not all workloads can benefit from using 1 GB > > pages. > > > > The following solution can solve the problem: > > 1) On boot time a dedicated cma area* is reserved. The size is passed > > as a kernel argument. > > 2) Run-time allocations of gigantic hugepages are performed using the > > cma allocator and the dedicated cma area > > > > In this case gigantic hugepages can be allocated successfully with a > > high probability, however the memory isn't completely wasted if nobody > > is using 1GB hugepages: it can be used for pagecache, anon memory, > > THPs, etc. > > > > * On a multi-node machine a per-node cma area is allocated on each node. > > Following gigantic hugetlb allocation are using the first available > > numa node if the mask isn't specified by a user. > > > > Usage: > > 1) configure the kernel to allocate a cma area for hugetlb allocations: > > pass hugetlb_cma=10G as a kernel argument > > > > 2) allocate hugetlb pages as usual, e.g. > > echo 10 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages > > > > If the option isn't enabled or the allocation of the cma area failed, > > the current behavior of the system is preserved. > > > > Only x86 is covered by this patch, but it's trivial to extend it to > > cover other architectures as well. > > Overall idea makes sense to me. I am worried about the configuration > side of the thing. Not only I would stick with the absolute size for now > for simplicity and because percentage usecase is not really explained > anywhere. I am also worried about the resulting memory layout you will > get when using the parameter. Thanks! I agree, we can drop the percentage configuration for the simplicity. > > Let's scroll down to the setup code ... > > > v2: fixed !CONFIG_CMA build, suggested by Andrew Morton > > > > Signed-off-by: Roman Gushchin <guro@xxxxxx> > > --- > > .../admin-guide/kernel-parameters.txt | 7 ++ > > arch/x86/kernel/setup.c | 3 + > > include/linux/hugetlb.h | 2 + > > mm/hugetlb.c | 115 ++++++++++++++++++ > > 4 files changed, 127 insertions(+) > > > > diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt > > index 0c9894247015..d3349ec1dbef 100644 > > --- a/Documentation/admin-guide/kernel-parameters.txt > > +++ b/Documentation/admin-guide/kernel-parameters.txt > > @@ -1452,6 +1452,13 @@ > > hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET > > registers. Default set by CONFIG_HPET_MMAP_DEFAULT. > > > > + hugetlb_cma= [x86-64] The size of a cma area used for allocation > > + of gigantic hugepages. > > + Format: nn[GTPE] | nn% > > + > > + If enabled, boot-time allocation of gigantic hugepages > > + is skipped. > > + > > hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot. > > hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages. > > On x86-64 and powerpc, this option can be specified > > diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c > > index a74262c71484..ceeb06ddfd41 100644 > > --- a/arch/x86/kernel/setup.c > > +++ b/arch/x86/kernel/setup.c > > @@ -16,6 +16,7 @@ > > #include <linux/pci.h> > > #include <linux/root_dev.h> > > #include <linux/sfi.h> > > +#include <linux/hugetlb.h> > > #include <linux/tboot.h> > > #include <linux/usb/xhci-dbgp.h> > > > > @@ -1158,6 +1159,8 @@ void __init setup_arch(char **cmdline_p) > > initmem_init(); > > dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); > > > > + hugetlb_cma_reserve(); > > + > > /* > > * Reserve memory for crash kernel after SRAT is parsed so that it > > * won't consume hotpluggable memory. > > diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h > > index 50480d16bd33..50050c981ab9 100644 > > --- a/include/linux/hugetlb.h > > +++ b/include/linux/hugetlb.h > > @@ -157,6 +157,8 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud); > > extern int sysctl_hugetlb_shm_group; > > extern struct list_head huge_boot_pages; > > > > +extern void __init hugetlb_cma_reserve(void); > > + > > /* arch callbacks */ > > > > pte_t *huge_pte_alloc(struct mm_struct *mm, > > diff --git a/mm/hugetlb.c b/mm/hugetlb.c > > index 7fb31750e670..c6f58bab879c 100644 > > --- a/mm/hugetlb.c > > +++ b/mm/hugetlb.c > > @@ -28,6 +28,7 @@ > > #include <linux/jhash.h> > > #include <linux/numa.h> > > #include <linux/llist.h> > > +#include <linux/cma.h> > > > > #include <asm/page.h> > > #include <asm/pgtable.h> > > @@ -44,6 +45,9 @@ > > int hugetlb_max_hstate __read_mostly; > > unsigned int default_hstate_idx; > > struct hstate hstates[HUGE_MAX_HSTATE]; > > + > > +static struct cma *hugetlb_cma[MAX_NUMNODES]; > > + > > /* > > * Minimum page order among possible hugepage sizes, set to a proper value > > * at boot time. > > @@ -1228,6 +1232,11 @@ static void destroy_compound_gigantic_page(struct page *page, > > > > static void free_gigantic_page(struct page *page, unsigned int order) > > { > > + if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) { > > + cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order); > > + return; > > + } > > + > > free_contig_range(page_to_pfn(page), 1 << order); > > } > > > > @@ -1237,6 +1246,23 @@ static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, > > { > > unsigned long nr_pages = 1UL << huge_page_order(h); > > > > + if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) { > > + struct page *page; > > + int nid; > > + > > + for_each_node_mask(nid, *nodemask) { > > + if (!hugetlb_cma[nid]) > > + break; > > + > > + page = cma_alloc(hugetlb_cma[nid], nr_pages, > > + huge_page_order(h), true); > > + if (page) > > + return page; > > + } > > + > > + return NULL; > > + } > > + > > return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); > > } > > > > @@ -2439,6 +2465,10 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h) > > > > for (i = 0; i < h->max_huge_pages; ++i) { > > if (hstate_is_gigantic(h)) { > > + if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) { > > + pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); > > + break; > > + } > > if (!alloc_bootmem_huge_page(h)) > > break; > > } else if (!alloc_pool_huge_page(h, > > @@ -5372,3 +5402,88 @@ void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) > > spin_unlock(&hugetlb_lock); > > } > > } > > + > > +#ifdef CONFIG_CMA > > +static unsigned long hugetlb_cma_size __initdata; > > +static unsigned long hugetlb_cma_percent __initdata; > > + > > +static int __init cmdline_parse_hugetlb_cma(char *p) > > +{ > > + unsigned long long val; > > + char *endptr; > > + > > + if (!p) > > + return -EINVAL; > > + > > + /* Value may be a percentage of total memory, otherwise bytes */ > > + val = simple_strtoull(p, &endptr, 0); > > + if (*endptr == '%') > > + hugetlb_cma_percent = clamp_t(unsigned long, val, 0, 100); > > + else > > + hugetlb_cma_size = memparse(p, &p); > > + > > + return 0; > > +} > > + > > +early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); > > + > > +void __init hugetlb_cma_reserve(void) > > +{ > > + unsigned long totalpages = 0; > > + unsigned long start_pfn, end_pfn; > > + phys_addr_t size; > > + int nid, i, res; > > + > > + if (!hugetlb_cma_size && !hugetlb_cma_percent) > > + return; > > + > > + if (hugetlb_cma_percent) { > > + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, > > + NULL) > > + totalpages += end_pfn - start_pfn; > > + > > + size = PAGE_SIZE * (hugetlb_cma_percent * 100 * totalpages) / > > + 10000UL; > > + } else { > > + size = hugetlb_cma_size; > > + } > > + > > + pr_info("hugetlb_cma: reserve %llu, %llu per node\n", size, > > + size / nr_online_nodes); > > + > > + size /= nr_online_nodes; > > + > > + for_each_node_state(nid, N_ONLINE) { > > + unsigned long min_pfn = 0, max_pfn = 0; > > + > > + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { > > + if (!min_pfn) > > + min_pfn = start_pfn; > > + max_pfn = end_pfn; > > + } > > Do you want to compare the range to the size? You mean add a check that the range is big enough? > But besides that, I > believe this really needs to be much more careful. I believe you do not > want to eat a considerable part of the kernel memory because the > resulting configuration will really struggle (yeah all the low mem/high > mem problems all over again). Well, so far I was focused on a particular case when the target cma size is significantly smaller than the total RAM size (~5-10%). What is the right thing to do here? Fallback to the current behavior if the requested size is more than x% of total memory? 1/2? How do you think? We've discussed it with Rik in private, and he expressed an idea to start with ~50% always and then shrink it on-demand. Something that we might have here long-term. Thank you!