On Thu, Jan 16, 2020 at 5:59 AM Daniel Axtens <dja@xxxxxxxxxx> wrote: > > Dmitry Vyukov <dvyukov@xxxxxxxxxx> writes: > > > On Wed, Jan 15, 2020 at 7:37 AM Daniel Axtens <dja@xxxxxxxxxx> wrote: > >> > >> The memcmp KASAN self-test fails on a kernel with both KASAN and > >> FORTIFY_SOURCE. > >> > >> When FORTIFY_SOURCE is on, a number of functions are replaced with > >> fortified versions, which attempt to check the sizes of the operands. > >> However, these functions often directly invoke __builtin_foo() once they > >> have performed the fortify check. Using __builtins may bypass KASAN > >> checks if the compiler decides to inline it's own implementation as > >> sequence of instructions, rather than emit a function call that goes out > >> to a KASAN-instrumented implementation. > >> > >> Why is only memcmp affected? > >> ============================ > >> > >> Of the string and string-like functions that kasan_test tests, only memcmp > >> is replaced by an inline sequence of instructions in my testing on x86 with > >> gcc version 9.2.1 20191008 (Ubuntu 9.2.1-9ubuntu2). > >> > >> I believe this is due to compiler heuristics. For example, if I annotate > >> kmalloc calls with the alloc_size annotation (and disable some fortify > >> compile-time checking!), the compiler will replace every memset except the > >> one in kmalloc_uaf_memset with inline instructions. (I have some WIP > >> patches to add this annotation.) > >> > >> Does this affect other functions in string.h? > >> ============================================= > >> > >> Yes. Anything that uses __builtin_* rather than __real_* could be > >> affected. This looks like: > >> > >> - strncpy > >> - strcat > >> - strlen > >> - strlcpy maybe, under some circumstances? > >> - strncat under some circumstances > >> - memset > >> - memcpy > >> - memmove > >> - memcmp (as noted) > >> - memchr > >> - strcpy > >> > >> Whether a function call is emitted always depends on the compiler. Most > >> bugs should get caught by FORTIFY_SOURCE, but the missed memcmp test shows > >> that this is not always the case. > >> > >> Isn't FORTIFY_SOURCE disabled with KASAN? > >> ========================================- > >> > >> The string headers on all arches supporting KASAN disable fortify with > >> kasan, but only when address sanitisation is _also_ disabled. For example > >> from x86: > >> > >> #if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__) > >> /* > >> * For files that are not instrumented (e.g. mm/slub.c) we > >> * should use not instrumented version of mem* functions. > >> */ > >> #define memcpy(dst, src, len) __memcpy(dst, src, len) > >> #define memmove(dst, src, len) __memmove(dst, src, len) > >> #define memset(s, c, n) __memset(s, c, n) > >> > >> #ifndef __NO_FORTIFY > >> #define __NO_FORTIFY /* FORTIFY_SOURCE uses __builtin_memcpy, etc. */ > >> #endif > >> > >> #endif > >> > >> This comes from commit 6974f0c4555e ("include/linux/string.h: add the > >> option of fortified string.h functions"), and doesn't work when KASAN is > >> enabled and the file is supposed to be sanitised - as with test_kasan.c > > > > Hi Daniel, > > > > Thanks for addressing this. And special kudos for description detail level! :) > > > > Phew, this layering of checking tools is a bit messy... > > > >> I'm pretty sure this is backwards: we shouldn't be using __builtin_memcpy > >> when we have a KASAN instrumented file, but we can use __builtin_* - and in > >> many cases all fortification - in files where we don't have > >> instrumentation. > > > > I think if we use __builtin_* in a non-instrumented file, the compiler > > can emit a call to normal mem* function which will be intercepted by > > kasan and we will get instrumentation in a file which should not be > > instrumented. Moreover this behavior will depend on optimization level > > and compiler internals. > > But as far as I see this does not affect any of the following and the > > code change. > > > > mmm OK - you are right, when I consider this and your other point... > > >> #if !defined(__NO_FORTIFY) && defined(__OPTIMIZE__) && defined(CONFIG_FORTIFY_SOURCE) > >> + > >> +#ifdef CONFIG_KASAN > >> +extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); > > > > > > arch headers do: > > > > #if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__) > > #define memcpy(dst, src, len) __memcpy(dst, src, len) > > ... > > > > to disable instrumentation. Does this still work with this change? > > Previously they disabled fortify. What happens now? Will define of > > memcpy to __memcpy also affect __RENAME(memcpy), so that > > __underlying_memcpy will be an alias to __memcpy? > > This is a good question. It's a really intricate set of interactions!! > > Between these two things, I think I'm going to just drop the removal of > architecture changes, which means that fortify will continue to be > disabled for files that disable KASAN sanitisation. It's just too > complicated to reason through and satisfy myself that we're not going to > get weird bugs, and the payoff is really small. Sounds good to me. We don't need to solve all of the world 's problems at once :) > >> +extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); > > > > All of these macros are leaking from the header file. Tomorrow we will > > discover __underlying_memcpy uses somewhere in the wild, which will > > not making understanding what actually happens simpler :) > > Perhaps undef all of them at the bottom? > > I can't stop the function definitions from leaking, but I can stop the > defines from leaking, which means we will catch any uses outside this > block in a FORITY_SOURCE && !KASAN build. I've fixed this for v2. I think it's good enough and a good practice to undef local macros. > Regards, > Daniel > > >> +extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); > >> +extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); > >> +extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); > >> +extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); > >> +extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); > >> +extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); > >> +extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); > >> +extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); > >> +#else > >> +#define __underlying_memchr __builtin_memchr > >> +#define __underlying_memcmp __builtin_memcmp > >> +#define __underlying_memcpy __builtin_memcpy > >> +#define __underlying_memmove __builtin_memmove > >> +#define __underlying_memset __builtin_memset > >> +#define __underlying_strcat __builtin_strcat > >> +#define __underlying_strcpy __builtin_strcpy > >> +#define __underlying_strlen __builtin_strlen > >> +#define __underlying_strncat __builtin_strncat > >> +#define __underlying_strncpy __builtin_strncpy > >> +#endif > >> + > >> __FORTIFY_INLINE char *strncpy(char *p, const char *q, __kernel_size_t size) > >> { > >> size_t p_size = __builtin_object_size(p, 0); > >> @@ -324,14 +349,14 @@ __FORTIFY_INLINE char *strncpy(char *p, const char *q, __kernel_size_t size) > >> __write_overflow(); > >> if (p_size < size) > >> fortify_panic(__func__); > >> - return __builtin_strncpy(p, q, size); > >> + return __underlying_strncpy(p, q, size); > >> } > >> > >> __FORTIFY_INLINE char *strcat(char *p, const char *q) > >> { > >> size_t p_size = __builtin_object_size(p, 0); > >> if (p_size == (size_t)-1) > >> - return __builtin_strcat(p, q); > >> + return __underlying_strcat(p, q); > >> if (strlcat(p, q, p_size) >= p_size) > >> fortify_panic(__func__); > >> return p; > >> @@ -345,7 +370,7 @@ __FORTIFY_INLINE __kernel_size_t strlen(const char *p) > >> /* Work around gcc excess stack consumption issue */ > >> if (p_size == (size_t)-1 || > >> (__builtin_constant_p(p[p_size - 1]) && p[p_size - 1] == '\0')) > >> - return __builtin_strlen(p); > >> + return __underlying_strlen(p); > >> ret = strnlen(p, p_size); > >> if (p_size <= ret) > >> fortify_panic(__func__); > >> @@ -378,7 +403,7 @@ __FORTIFY_INLINE size_t strlcpy(char *p, const char *q, size_t size) > >> __write_overflow(); > >> if (len >= p_size) > >> fortify_panic(__func__); > >> - __builtin_memcpy(p, q, len); > >> + __underlying_memcpy(p, q, len); > >> p[len] = '\0'; > >> } > >> return ret; > >> @@ -391,12 +416,12 @@ __FORTIFY_INLINE char *strncat(char *p, const char *q, __kernel_size_t count) > >> size_t p_size = __builtin_object_size(p, 0); > >> size_t q_size = __builtin_object_size(q, 0); > >> if (p_size == (size_t)-1 && q_size == (size_t)-1) > >> - return __builtin_strncat(p, q, count); > >> + return __underlying_strncat(p, q, count); > >> p_len = strlen(p); > >> copy_len = strnlen(q, count); > >> if (p_size < p_len + copy_len + 1) > >> fortify_panic(__func__); > >> - __builtin_memcpy(p + p_len, q, copy_len); > >> + __underlying_memcpy(p + p_len, q, copy_len); > >> p[p_len + copy_len] = '\0'; > >> return p; > >> } > >> @@ -408,7 +433,7 @@ __FORTIFY_INLINE void *memset(void *p, int c, __kernel_size_t size) > >> __write_overflow(); > >> if (p_size < size) > >> fortify_panic(__func__); > >> - return __builtin_memset(p, c, size); > >> + return __underlying_memset(p, c, size); > >> } > >> > >> __FORTIFY_INLINE void *memcpy(void *p, const void *q, __kernel_size_t size) > >> @@ -423,7 +448,7 @@ __FORTIFY_INLINE void *memcpy(void *p, const void *q, __kernel_size_t size) > >> } > >> if (p_size < size || q_size < size) > >> fortify_panic(__func__); > >> - return __builtin_memcpy(p, q, size); > >> + return __underlying_memcpy(p, q, size); > >> } > >> > >> __FORTIFY_INLINE void *memmove(void *p, const void *q, __kernel_size_t size) > >> @@ -438,7 +463,7 @@ __FORTIFY_INLINE void *memmove(void *p, const void *q, __kernel_size_t size) > >> } > >> if (p_size < size || q_size < size) > >> fortify_panic(__func__); > >> - return __builtin_memmove(p, q, size); > >> + return __underlying_memmove(p, q, size); > >> } > >> > >> extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); > >> @@ -464,7 +489,7 @@ __FORTIFY_INLINE int memcmp(const void *p, const void *q, __kernel_size_t size) > >> } > >> if (p_size < size || q_size < size) > >> fortify_panic(__func__); > >> - return __builtin_memcmp(p, q, size); > >> + return __underlying_memcmp(p, q, size); > >> } > >> > >> __FORTIFY_INLINE void *memchr(const void *p, int c, __kernel_size_t size) > >> @@ -474,7 +499,7 @@ __FORTIFY_INLINE void *memchr(const void *p, int c, __kernel_size_t size) > >> __read_overflow(); > >> if (p_size < size) > >> fortify_panic(__func__); > >> - return __builtin_memchr(p, c, size); > >> + return __underlying_memchr(p, c, size); > >> } > >> > >> void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); > >> @@ -505,7 +530,7 @@ __FORTIFY_INLINE char *strcpy(char *p, const char *q) > >> size_t p_size = __builtin_object_size(p, 0); > >> size_t q_size = __builtin_object_size(q, 0); > >> if (p_size == (size_t)-1 && q_size == (size_t)-1) > >> - return __builtin_strcpy(p, q); > >> + return __underlying_strcpy(p, q); > >> memcpy(p, q, strlen(q) + 1); > >> return p; > >> } > >> -- > >> 2.20.1 > >> > > -- > You received this message because you are subscribed to the Google Groups "kasan-dev" group. > To unsubscribe from this group and stop receiving emails from it, send an email to kasan-dev+unsubscribe@xxxxxxxxxxxxxxxx. > To view this discussion on the web visit https://groups.google.com/d/msgid/kasan-dev/8736cgkndh.fsf%40dja-thinkpad.axtens.net.