Re: [PATCH 18/26] xfs: reduce kswapd blocking on inode locking.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, Oct 09, 2019 at 02:21:16PM +1100, Dave Chinner wrote:
> From: Dave Chinner <dchinner@xxxxxxxxxx>
> 
> When doing async node reclaiming, we grab a batch of inodes that we
> are likely able to reclaim and ignore those that are already
> flushing. However, when we actually go to reclaim them, the first
> thing we do is lock the inode. If we are racing with something
> else reclaiming the inode or flushing it because it is dirty,
> we block on the inode lock. Hence we can still block kswapd here.
> 
> Further, if we flush an inode, we also cluster all the other dirty
> inodes in that cluster into the same IO, flush locking them all.
> However, if the workload is operating on sequential inodes (e.g.
> created by a tarball extraction) most of these inodes will be
> sequntial in the cache and so in the same batch
> we've already grabbed for reclaim scanning.
> 
> As a result, it is common for all the inodes in the batch to be
> dirty and it is common for the first inode flushed to also flush all
> the inodes in the reclaim batch. In which case, they are now all
> going to be flush locked and we do not want to block on them.
> 
> Hence, for async reclaim (SYNC_TRYLOCK) make sure we always use
> trylock semantics and abort reclaim of an inode as quickly as we can
> without blocking kswapd. This will be necessary for the upcoming
> conversion to LRU lists for inode reclaim tracking.
> 
> Found via tracing and finding big batches of repeated lock/unlock
> runs on inodes that we just flushed by write clustering during
> reclaim.

Looks good:

Reviewed-by: Christoph Hellwig <hch@xxxxxx>




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux