fix typos for: elaboarte -> elaborate architecure -> architecture compltes -> completes And, convert the markup :c:func:`foo` to foo() as kernel documentation toolchain can recognize foo() as a function. Suggested-by: Mike Rapoport <rppt@xxxxxxxxxxxxx> Signed-off-by: Cao jin <caoj.fnst@xxxxxxxxxxxxxx> --- mm/memblock.c | 44 ++++++++++++++++++++------------------------ 1 file changed, 20 insertions(+), 24 deletions(-) diff --git a/mm/memblock.c b/mm/memblock.c index 7d4f61ae666a..c23b370cc49e 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -57,42 +57,38 @@ * at build time. The region arrays for the "memory" and "reserved" * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the * "physmap" type to %INIT_PHYSMEM_REGIONS. - * The :c:func:`memblock_allow_resize` enables automatic resizing of - * the region arrays during addition of new regions. This feature - * should be used with care so that memory allocated for the region - * array will not overlap with areas that should be reserved, for - * example initrd. + * The memblock_allow_resize() enables automatic resizing of the region + * arrays during addition of new regions. This feature should be used + * with care so that memory allocated for the region array will not + * overlap with areas that should be reserved, for example initrd. * * The early architecture setup should tell memblock what the physical - * memory layout is by using :c:func:`memblock_add` or - * :c:func:`memblock_add_node` functions. The first function does not - * assign the region to a NUMA node and it is appropriate for UMA - * systems. Yet, it is possible to use it on NUMA systems as well and - * assign the region to a NUMA node later in the setup process using - * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` - * performs such an assignment directly. + * memory layout is by using memblock_add() or memblock_add_node() + * functions. The first function does not assign the region to a NUMA + * node and it is appropriate for UMA systems. Yet, it is possible to + * use it on NUMA systems as well and assign the region to a NUMA node + * later in the setup process using memblock_set_node(). The + * memblock_add_node() performs such an assignment directly. * * Once memblock is setup the memory can be allocated using one of the * API variants: * - * * :c:func:`memblock_phys_alloc*` - these functions return the - * **physical** address of the allocated memory - * * :c:func:`memblock_alloc*` - these functions return the **virtual** - * address of the allocated memory. + * * memblock_phys_alloc*() - these functions return the **physical** + * address of the allocated memory + * * memblock_alloc*() - these functions return the **virtual** address + * of the allocated memory. * * Note, that both API variants use implict assumptions about allowed * memory ranges and the fallback methods. Consult the documentation - * of :c:func:`memblock_alloc_internal` and - * :c:func:`memblock_alloc_range_nid` functions for more elaboarte - * description. + * of memblock_alloc_internal() and memblock_alloc_range_nid() + * functions for more elaborate description. * - * As the system boot progresses, the architecture specific - * :c:func:`mem_init` function frees all the memory to the buddy page - * allocator. + * As the system boot progresses, the architecture specific mem_init() + * function frees all the memory to the buddy page allocator. * - * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the + * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the * memblock data structures will be discarded after the system - * initialization compltes. + * initialization completes. */ #ifndef CONFIG_NEED_MULTIPLE_NODES -- 2.21.0