On Sun, Aug 4, 2019 at 9:28 PM Minchan Kim <minchan@xxxxxxxxxx> wrote: > > Hi Henry, > > On Thu, Aug 01, 2019 at 06:53:32PM -0700, Henry Burns wrote: > > In zs_destroy_pool() we call flush_work(&pool->free_work). However, we > > have no guarantee that migration isn't happening in the background > > at that time. > > > > Since migration can't directly free pages, it relies on free_work > > being scheduled to free the pages. But there's nothing preventing an > > in-progress migrate from queuing the work *after* > > zs_unregister_migration() has called flush_work(). Which would mean > > pages still pointing at the inode when we free it. > > We already unregister shrinker so there is no upcoming async free call > via shrinker so the only concern is zs_compact API direct call from > the user. Is that what what you desribe from the description? What I am describing is a call to zsmalloc_aops->migratepage() by kcompactd (which can call schedule work in either zs_page_migrate() or zs_page_putback should the zspage become empty). While we are migrating a page, we remove it from the class. Suppose zs_free() loses a race with migration. We would schedule async_free_zspage() to handle freeing that zspage, however we have no guarantee that migration has finished by the time we finish flush_work(&pool->work). In that case we then call iput(inode), and now we have a page pointing to a non-existent inode. (At which point something like kcompactd would potentially BUG() if it tries to get a page (from the inode) that doesn't exist anymore) > > If so, can't we add a flag to indicate destroy of the pool and > global counter to indicate how many of zs_compact was nested? > > So, zs_unregister_migration in zs_destroy_pool can set the flag to > prevent upcoming zs_compact call and wait until the global counter > will be zero. Once it's done, finally flush the work. > > My point is it's not a per-class granuarity but global. We could have a pool level counter of isolated pages, and wait for that to finish before starting flush_work(&pool->work); However, that would require an atomic_long in zs_pool, and we would have to eat the cost of any contention over that lock. Still, it might be preferable to a per-class granularity. > > Thanks. > > > > > Since we know at destroy time all objects should be free, no new > > migrations can come in (since zs_page_isolate() fails for fully-free > > zspages). This means it is sufficient to track a "# isolated zspages" > > count by class, and have the destroy logic ensure all such pages have > > drained before proceeding. Keeping that state under the class > > spinlock keeps the logic straightforward. > > > > Signed-off-by: Henry Burns <henryburns@xxxxxxxxxx> > > --- > > mm/zsmalloc.c | 68 ++++++++++++++++++++++++++++++++++++++++++++++++--- > > 1 file changed, 65 insertions(+), 3 deletions(-) > > > > diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c > > index efa660a87787..1f16ed4d6a13 100644 > > --- a/mm/zsmalloc.c > > +++ b/mm/zsmalloc.c > > @@ -53,6 +53,7 @@ > > #include <linux/zpool.h> > > #include <linux/mount.h> > > #include <linux/migrate.h> > > +#include <linux/wait.h> > > #include <linux/pagemap.h> > > #include <linux/fs.h> > > > > @@ -206,6 +207,10 @@ struct size_class { > > int objs_per_zspage; > > /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ > > int pages_per_zspage; > > +#ifdef CONFIG_COMPACTION > > + /* Number of zspages currently isolated by compaction */ > > + int isolated; > > +#endif > > > > unsigned int index; > > struct zs_size_stat stats; > > @@ -267,6 +272,8 @@ struct zs_pool { > > #ifdef CONFIG_COMPACTION > > struct inode *inode; > > struct work_struct free_work; > > + /* A workqueue for when migration races with async_free_zspage() */ > > + struct wait_queue_head migration_wait; > > #endif > > }; > > > > @@ -1917,6 +1924,21 @@ static void putback_zspage_deferred(struct zs_pool *pool, > > > > } > > > > +static inline void zs_class_dec_isolated(struct zs_pool *pool, > > + struct size_class *class) > > +{ > > + assert_spin_locked(&class->lock); > > + VM_BUG_ON(class->isolated <= 0); > > + class->isolated--; > > + /* > > + * There's no possibility of racing, since wait_for_isolated_drain() > > + * checks the isolated count under &class->lock after enqueuing > > + * on migration_wait. > > + */ > > + if (class->isolated == 0 && waitqueue_active(&pool->migration_wait)) > > + wake_up_all(&pool->migration_wait); > > +} > > + > > static void replace_sub_page(struct size_class *class, struct zspage *zspage, > > struct page *newpage, struct page *oldpage) > > { > > @@ -1986,6 +2008,7 @@ static bool zs_page_isolate(struct page *page, isolate_mode_t mode) > > */ > > if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { > > get_zspage_mapping(zspage, &class_idx, &fullness); > > + class->isolated++; > > remove_zspage(class, zspage, fullness); > > } > > > > @@ -2085,8 +2108,14 @@ static int zs_page_migrate(struct address_space *mapping, struct page *newpage, > > * Page migration is done so let's putback isolated zspage to > > * the list if @page is final isolated subpage in the zspage. > > */ > > - if (!is_zspage_isolated(zspage)) > > + if (!is_zspage_isolated(zspage)) { > > + /* > > + * We still hold the class lock while all of this is happening, > > + * so we cannot race with zs_destroy_pool() > > + */ > > putback_zspage_deferred(pool, class, zspage); > > + zs_class_dec_isolated(pool, class); > > + } > > > > reset_page(page); > > put_page(page); > > @@ -2131,9 +2160,11 @@ static void zs_page_putback(struct page *page) > > > > spin_lock(&class->lock); > > dec_zspage_isolation(zspage); > > - if (!is_zspage_isolated(zspage)) > > - putback_zspage_deferred(pool, class, zspage); > > > > + if (!is_zspage_isolated(zspage)) { > > + putback_zspage_deferred(pool, class, zspage); > > + zs_class_dec_isolated(pool, class); > > + } > > spin_unlock(&class->lock); > > } > > > > @@ -2156,8 +2187,36 @@ static int zs_register_migration(struct zs_pool *pool) > > return 0; > > } > > > > +static bool class_isolated_are_drained(struct size_class *class) > > +{ > > + bool ret; > > + > > + spin_lock(&class->lock); > > + ret = class->isolated == 0; > > + spin_unlock(&class->lock); > > + return ret; > > +} > > + > > +/* Function for resolving migration */ > > +static void wait_for_isolated_drain(struct zs_pool *pool) > > +{ > > + int i; > > + > > + /* > > + * We're in the process of destroying the pool, so there are no > > + * active allocations. zs_page_isolate() fails for completely free > > + * zspages, so we need only wait for each size_class's isolated > > + * count to hit zero. > > + */ > > + for (i = 0; i < ZS_SIZE_CLASSES; i++) { > > + wait_event(pool->migration_wait, > > + class_isolated_are_drained(pool->size_class[i])); > > + } > > +} > > + > > static void zs_unregister_migration(struct zs_pool *pool) > > { > > + wait_for_isolated_drain(pool); /* This can block */ > > flush_work(&pool->free_work); > > iput(pool->inode); > > } > > @@ -2401,6 +2460,8 @@ struct zs_pool *zs_create_pool(const char *name) > > if (!pool->name) > > goto err; > > > > + init_waitqueue_head(&pool->migration_wait); > > + > > if (create_cache(pool)) > > goto err; > > > > @@ -2466,6 +2527,7 @@ struct zs_pool *zs_create_pool(const char *name) > > class->index = i; > > class->pages_per_zspage = pages_per_zspage; > > class->objs_per_zspage = objs_per_zspage; > > + class->isolated = 0; > > spin_lock_init(&class->lock); > > pool->size_class[i] = class; > > for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; > > -- > > 2.22.0.770.g0f2c4a37fd-goog > >