On Mon, May 20, 2019 at 03:40:05PM +1000, Tobin C. Harding wrote: > Internal fragmentation can occur within pages used by the slub > allocator. Under some workloads large numbers of pages can be used by > partial slab pages. This under-utilisation is bad simply because it > wastes memory but also because if the system is under memory pressure > higher order allocations may become difficult to satisfy. If we can > defrag slab caches we can alleviate these problems. > > Implement Slab Movable Objects in order to defragment slab caches. > > Slab defragmentation may occur: > > 1. Unconditionally when __kmem_cache_shrink() is called on a slab cache > by the kernel calling kmem_cache_shrink(). > > 2. Unconditionally through the use of the slabinfo command. > > slabinfo <cache> -s > > 3. Conditionally via the use of kmem_cache_defrag() > > - Use Slab Movable Objects when shrinking cache. > > Currently when the kernel calls kmem_cache_shrink() we curate the > partial slabs list. If object migration is not enabled for the cache we > still do this, if however, SMO is enabled we attempt to move objects in > partially full slabs in order to defragment the cache. Shrink attempts > to move all objects in order to reduce the cache to a single partial > slab for each node. > > - Add conditional per node defrag via new function: > > kmem_defrag_slabs(int node). > > kmem_defrag_slabs() attempts to defragment all slab caches for > node. Defragmentation is done conditionally dependent on MAX_PARTIAL > _and_ defrag_used_ratio. > > Caches are only considered for defragmentation if the number of > partial slabs exceeds MAX_PARTIAL (per node). > > Also, defragmentation only occurs if the usage ratio of the slab is > lower than the configured percentage (sysfs field added in this > patch). Fragmentation ratios are measured by calculating the > percentage of objects in use compared to the total number of objects > that the slab page can accommodate. > > The scanning of slab caches is optimized because the defragmentable > slabs come first on the list. Thus we can terminate scans on the > first slab encountered that does not support defragmentation. > > kmem_defrag_slabs() takes a node parameter. This can either be -1 if > defragmentation should be performed on all nodes, or a node number. > > Defragmentation may be disabled by setting defrag ratio to 0 > > echo 0 > /sys/kernel/slab/<cache>/defrag_used_ratio > > - Add a defrag ratio sysfs field and set it to 30% by default. A limit > of 30% specifies that more than 3 out of 10 available slots for objects > need to be in use otherwise slab defragmentation will be attempted on > the remaining objects. > > In order for a cache to be defragmentable the cache must support object > migration (SMO). Enabling SMO for a cache is done via a call to the > recently added function: > > void kmem_cache_setup_mobility(struct kmem_cache *, > kmem_cache_isolate_func, > kmem_cache_migrate_func); > > Co-developed-by: Christoph Lameter <cl@xxxxxxxxx> > Signed-off-by: Tobin C. Harding <tobin@xxxxxxxxxx> > --- > Documentation/ABI/testing/sysfs-kernel-slab | 14 + > include/linux/slab.h | 1 + > include/linux/slub_def.h | 7 + > mm/slub.c | 385 ++++++++++++++++---- > 4 files changed, 334 insertions(+), 73 deletions(-) Hi Tobin! Overall looks very good to me! I'll take another look when you'll post a non-RFC version, but so far I can't find any issues. A generic question: as I understand, you do support only root kmemcaches now. Is kmemcg support in plans? Without it the patchset isn't as attractive to anyone using cgroups, as it could be. Also, I hope it can solve (or mitigate) the memcg-specific problem of scattering vfs cache workingset over multiple generations of the same cgroup (their kmem_caches). Thanks! > > diff --git a/Documentation/ABI/testing/sysfs-kernel-slab b/Documentation/ABI/testing/sysfs-kernel-slab > index 29601d93a1c2..c6f129af035a 100644 > --- a/Documentation/ABI/testing/sysfs-kernel-slab > +++ b/Documentation/ABI/testing/sysfs-kernel-slab > @@ -180,6 +180,20 @@ Description: > list. It can be written to clear the current count. > Available when CONFIG_SLUB_STATS is enabled. > > +What: /sys/kernel/slab/cache/defrag_used_ratio > +Date: May 2019 > +KernelVersion: 5.2 > +Contact: Christoph Lameter <cl@xxxxxxxxxxxxxxxxxxxx> > + Pekka Enberg <penberg@xxxxxxxxxxxxxx>, > +Description: > + The defrag_used_ratio file allows the control of how aggressive > + slab fragmentation reduction works at reclaiming objects from > + sparsely populated slabs. This is a percentage. If a slab has > + less than this percentage of objects allocated then reclaim will > + attempt to reclaim objects so that the whole slab page can be > + freed. 0% specifies no reclaim attempt (defrag disabled), 100% > + specifies attempt to reclaim all pages. The default is 30%. > + > What: /sys/kernel/slab/cache/deactivate_to_tail > Date: February 2008 > KernelVersion: 2.6.25 > diff --git a/include/linux/slab.h b/include/linux/slab.h > index 886fc130334d..4bf381b34829 100644 > --- a/include/linux/slab.h > +++ b/include/linux/slab.h > @@ -149,6 +149,7 @@ struct kmem_cache *kmem_cache_create_usercopy(const char *name, > void (*ctor)(void *)); > void kmem_cache_destroy(struct kmem_cache *); > int kmem_cache_shrink(struct kmem_cache *); > +unsigned long kmem_defrag_slabs(int node); > > void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); > void memcg_deactivate_kmem_caches(struct mem_cgroup *); > diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h > index 2879a2f5f8eb..34c6f1250652 100644 > --- a/include/linux/slub_def.h > +++ b/include/linux/slub_def.h > @@ -107,6 +107,13 @@ struct kmem_cache { > unsigned int red_left_pad; /* Left redzone padding size */ > const char *name; /* Name (only for display!) */ > struct list_head list; /* List of slab caches */ > + int defrag_used_ratio; /* > + * Ratio used to check against the > + * percentage of objects allocated in a > + * slab page. If less than this ratio > + * is allocated then reclaim attempts > + * are made. > + */ > #ifdef CONFIG_SYSFS > struct kobject kobj; /* For sysfs */ > struct work_struct kobj_remove_work; > diff --git a/mm/slub.c b/mm/slub.c > index 66d474397c0f..2157205df7ba 100644 > --- a/mm/slub.c > +++ b/mm/slub.c > @@ -355,6 +355,12 @@ static __always_inline void slab_lock(struct page *page) > bit_spin_lock(PG_locked, &page->flags); > } > > +static __always_inline int slab_trylock(struct page *page) > +{ > + VM_BUG_ON_PAGE(PageTail(page), page); > + return bit_spin_trylock(PG_locked, &page->flags); > +} > + > static __always_inline void slab_unlock(struct page *page) > { > VM_BUG_ON_PAGE(PageTail(page), page); > @@ -3634,6 +3640,7 @@ static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) > > set_cpu_partial(s); > > + s->defrag_used_ratio = 30; > #ifdef CONFIG_NUMA > s->remote_node_defrag_ratio = 1000; > #endif > @@ -3950,79 +3957,6 @@ void kfree(const void *x) > } > EXPORT_SYMBOL(kfree); > > -#define SHRINK_PROMOTE_MAX 32 > - > -/* > - * kmem_cache_shrink discards empty slabs and promotes the slabs filled > - * up most to the head of the partial lists. New allocations will then > - * fill those up and thus they can be removed from the partial lists. > - * > - * The slabs with the least items are placed last. This results in them > - * being allocated from last increasing the chance that the last objects > - * are freed in them. > - */ > -int __kmem_cache_shrink(struct kmem_cache *s) > -{ > - int node; > - int i; > - struct kmem_cache_node *n; > - struct page *page; > - struct page *t; > - struct list_head discard; > - struct list_head promote[SHRINK_PROMOTE_MAX]; > - unsigned long flags; > - int ret = 0; > - > - flush_all(s); > - for_each_kmem_cache_node(s, node, n) { > - INIT_LIST_HEAD(&discard); > - for (i = 0; i < SHRINK_PROMOTE_MAX; i++) > - INIT_LIST_HEAD(promote + i); > - > - spin_lock_irqsave(&n->list_lock, flags); > - > - /* > - * Build lists of slabs to discard or promote. > - * > - * Note that concurrent frees may occur while we hold the > - * list_lock. page->inuse here is the upper limit. > - */ > - list_for_each_entry_safe(page, t, &n->partial, slab_list) { > - int free = page->objects - page->inuse; > - > - /* Do not reread page->inuse */ > - barrier(); > - > - /* We do not keep full slabs on the list */ > - BUG_ON(free <= 0); > - > - if (free == page->objects) { > - list_move(&page->slab_list, &discard); > - n->nr_partial--; > - } else if (free <= SHRINK_PROMOTE_MAX) > - list_move(&page->slab_list, promote + free - 1); > - } > - > - /* > - * Promote the slabs filled up most to the head of the > - * partial list. > - */ > - for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) > - list_splice(promote + i, &n->partial); > - > - spin_unlock_irqrestore(&n->list_lock, flags); > - > - /* Release empty slabs */ > - list_for_each_entry_safe(page, t, &discard, slab_list) > - discard_slab(s, page); > - > - if (slabs_node(s, node)) > - ret = 1; > - } > - > - return ret; > -} > - > #ifdef CONFIG_MEMCG > static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) > { > @@ -4317,6 +4251,287 @@ int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) > return err; > } > > +/* > + * Allocate a slab scratch space that is sufficient to keep pointers to > + * individual objects for all objects in cache and also a bitmap for the > + * objects (used to mark which objects are active). > + */ > +static inline void *alloc_scratch(struct kmem_cache *s) > +{ > + unsigned int size = oo_objects(s->max); > + > + return kmalloc(size * sizeof(void *) + > + BITS_TO_LONGS(size) * sizeof(unsigned long), > + GFP_KERNEL); > +} I'd pass a single number (s->max) instead of s here. > + > +/* > + * move_slab_page() - Move all objects in the given slab. > + * @page: The slab we are working on. > + * @scratch: Pointer to scratch space. > + * @node: The target node to move objects to. > + * > + * If the target node is not the current node then the object is moved > + * to the target node. If the target node is the current node then this > + * is an effective way of defragmentation since the current slab page > + * with its object is exempt from allocation. > + */ > +static void move_slab_page(struct page *page, void *scratch, int node) > +{ > + unsigned long objects; > + struct kmem_cache *s; > + unsigned long flags; > + unsigned long *map; > + void *private; > + int count; > + void *p; > + void **vector = scratch; > + void *addr = page_address(page); > + > + local_irq_save(flags); > + slab_lock(page); > + > + BUG_ON(!PageSlab(page)); /* Must be a slab page */ > + BUG_ON(!page->frozen); /* Slab must have been frozen earlier */ > + > + s = page->slab_cache; > + objects = page->objects; > + map = scratch + objects * sizeof(void **); > + > + /* Determine used objects */ > + bitmap_fill(map, objects); > + for (p = page->freelist; p; p = get_freepointer(s, p)) > + __clear_bit(slab_index(p, s, addr), map); > + > + /* Build vector of pointers to objects */ > + count = 0; > + memset(vector, 0, objects * sizeof(void **)); > + for_each_object(p, s, addr, objects) > + if (test_bit(slab_index(p, s, addr), map)) > + vector[count++] = p; > + > + if (s->isolate) > + private = s->isolate(s, vector, count); > + else > + /* Objects do not need to be isolated */ > + private = NULL; > + > + /* > + * Pinned the objects. Now we can drop the slab lock. The slab > + * is frozen so it cannot vanish from under us nor will > + * allocations be performed on the slab. However, unlocking the > + * slab will allow concurrent slab_frees to proceed. So the > + * subsystem must have a way to tell from the content of the > + * object that it was freed. > + * > + * If neither RCU nor ctor is being used then the object may be > + * modified by the allocator after being freed which may disrupt > + * the ability of the migrate function to tell if the object is > + * free or not. > + */ > + slab_unlock(page); > + local_irq_restore(flags); > + > + /* Perform callback to move the objects */ > + s->migrate(s, vector, count, node, private); > +} > + > +/* > + * kmem_cache_defrag() - Defragment node. > + * @s: cache we are working on. > + * @node: The node to move objects from. > + * @target_node: The node to move objects to. > + * @ratio: The defrag ratio (percentage, between 0 and 100). > + * > + * Release slabs with zero objects and try to call the migration function > + * for slabs with less than the 'ratio' percentage of objects allocated. > + * > + * Moved objects are allocated on @target_node. > + * > + * Return: The number of partial slabs left on @node after the > + * operation. > + */ > +static unsigned long kmem_cache_defrag(struct kmem_cache *s, > + int node, int target_node, int ratio) > +{ > + struct kmem_cache_node *n = get_node(s, node); > + struct page *page, *page2; > + LIST_HEAD(move_list); > + unsigned long flags; > + > + if (node == target_node && n->nr_partial <= 1) { > + /* > + * Trying to reduce fragmentation on a node but there is > + * only a single or no partial slab page. This is already > + * the optimal object density that we can reach. > + */ > + return n->nr_partial; > + } > + > + spin_lock_irqsave(&n->list_lock, flags); > + list_for_each_entry_safe(page, page2, &n->partial, lru) { > + if (!slab_trylock(page)) > + /* Busy slab. Get out of the way */ > + continue; > + > + if (page->inuse) { > + if (page->inuse > ratio * page->objects / 100) { > + slab_unlock(page); > + /* > + * Skip slab because the object density > + * in the slab page is high enough. > + */ > + continue; > + } > + > + list_move(&page->lru, &move_list); > + if (s->migrate) { > + /* Stop page being considered for allocations */ > + n->nr_partial--; > + page->frozen = 1; > + } > + slab_unlock(page); > + } else { /* Empty slab page */ > + list_del(&page->lru); > + n->nr_partial--; > + slab_unlock(page); > + discard_slab(s, page); > + } > + } > + > + if (!s->migrate) { > + /* > + * No defrag method. By simply putting the zaplist at > + * the end of the partial list we can let them simmer > + * longer and thus increase the chance of all objects > + * being reclaimed. > + */ > + list_splice(&move_list, n->partial.prev); > + } > + > + spin_unlock_irqrestore(&n->list_lock, flags); > + > + if (s->migrate && !list_empty(&move_list)) { > + void **scratch = alloc_scratch(s); > + if (scratch) { > + /* Try to remove / move the objects left */ > + list_for_each_entry(page, &move_list, lru) { > + if (page->inuse) > + move_slab_page(page, scratch, target_node); > + } > + kfree(scratch); > + } > + > + /* Inspect results and dispose of pages */ > + spin_lock_irqsave(&n->list_lock, flags); > + list_for_each_entry_safe(page, page2, &move_list, lru) { > + list_del(&page->lru); > + slab_lock(page); > + page->frozen = 0; > + > + if (page->inuse) { > + /* > + * Objects left in slab page, move it to the > + * tail of the partial list to increase the > + * chance that the freeing of the remaining > + * objects will free the slab page. > + */ > + n->nr_partial++; > + list_add_tail(&page->lru, &n->partial); > + slab_unlock(page); > + } else { > + slab_unlock(page); > + discard_slab(s, page); > + } > + } > + spin_unlock_irqrestore(&n->list_lock, flags); > + } > + > + return n->nr_partial; > +} > + > +/** > + * kmem_defrag_slabs() - Defrag slab caches. > + * @node: The node to defrag or -1 for all nodes. > + * > + * Defrag slabs conditional on the amount of fragmentation in a page. > + * > + * Return: The total number of partial slabs in migratable caches left > + * on @node after the operation. > + */ > +unsigned long kmem_defrag_slabs(int node) > +{ > + struct kmem_cache *s; > + unsigned long left = 0; > + int nid; > + > + if (node >= MAX_NUMNODES) > + return -EINVAL; > + > + /* > + * kmem_defrag_slabs() may be called from the reclaim path which > + * may be called for any page allocator alloc. So there is the > + * danger that we get called in a situation where slub already > + * acquired the slub_lock for other purposes. > + */ > + if (!mutex_trylock(&slab_mutex)) > + return 0; > + > + list_for_each_entry(s, &slab_caches, list) { > + /* > + * Defragmentable caches come first. If the slab cache is > + * not defragmentable then we can stop traversing the list. > + */ > + if (!s->migrate) > + break; > + > + if (node >= 0) { > + if (s->node[node]->nr_partial > MAX_PARTIAL) { > + left += kmem_cache_defrag(s, node, node, > + s->defrag_used_ratio); > + } > + continue; > + } > + > + for_each_node_state(nid, N_NORMAL_MEMORY) { > + if (s->node[nid]->nr_partial > MAX_PARTIAL) { > + left += kmem_cache_defrag(s, nid, nid, > + s->defrag_used_ratio); > + } > + } > + } > + mutex_unlock(&slab_mutex); > + return left; > +} > +EXPORT_SYMBOL(kmem_defrag_slabs); > + > +/** > + * __kmem_cache_shrink() - Shrink a cache. > + * @s: The cache to shrink. > + * > + * Reduces the memory footprint of a slab cache by as much as possible. > + * > + * This works by: > + * 1. Removing empty slabs from the partial list. > + * 2. Migrating slab objects to denser slab pages if the slab cache > + * supports migration. If not, reorganizing the partial list so that > + * more densely allocated slab pages come first. > + * > + * Not called directly, called by kmem_cache_shrink(). > + */ > +int __kmem_cache_shrink(struct kmem_cache *s) > +{ > + int node; > + int left = 0; > + > + flush_all(s); > + for_each_node_state(node, N_NORMAL_MEMORY) > + left += kmem_cache_defrag(s, node, node, 100); > + > + return left; > +} > +EXPORT_SYMBOL(__kmem_cache_shrink); > + > void kmem_cache_setup_mobility(struct kmem_cache *s, > kmem_cache_isolate_func isolate, > kmem_cache_migrate_func migrate) > @@ -5168,6 +5383,29 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) > } > SLAB_ATTR_RO(destroy_by_rcu); > > +static ssize_t defrag_used_ratio_show(struct kmem_cache *s, char *buf) > +{ > + return sprintf(buf, "%d\n", s->defrag_used_ratio); > +} > + > +static ssize_t defrag_used_ratio_store(struct kmem_cache *s, > + const char *buf, size_t length) > +{ > + unsigned long ratio; > + int err; > + > + err = kstrtoul(buf, 10, &ratio); > + if (err) > + return err; > + > + if (ratio > 100) > + return -EINVAL; > + > + s->defrag_used_ratio = ratio; > + return length; > +} > +SLAB_ATTR(defrag_used_ratio); > + > #ifdef CONFIG_SLUB_DEBUG > static ssize_t slabs_show(struct kmem_cache *s, char *buf) > { > @@ -5492,6 +5730,7 @@ static struct attribute *slab_attrs[] = { > &validate_attr.attr, > &alloc_calls_attr.attr, > &free_calls_attr.attr, > + &defrag_used_ratio_attr.attr, > #endif > #ifdef CONFIG_ZONE_DMA > &cache_dma_attr.attr, > -- > 2.21.0 >