Re: [PATCH 1/2] mm: introduce put_user_page*(), placeholder versions

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, Dec 12, 2018 at 9:02 AM Jerome Glisse <jglisse@xxxxxxxxxx> wrote:
>
> On Wed, Dec 12, 2018 at 08:27:35AM -0800, Dan Williams wrote:
> > On Wed, Dec 12, 2018 at 7:03 AM Jerome Glisse <jglisse@xxxxxxxxxx> wrote:
> > >
> > > On Mon, Dec 10, 2018 at 11:28:46AM +0100, Jan Kara wrote:
> > > > On Fri 07-12-18 21:24:46, Jerome Glisse wrote:
> > > > > Another crazy idea, why not treating GUP as another mapping of the page
> > > > > and caller of GUP would have to provide either a fake anon_vma struct or
> > > > > a fake vma struct (or both for PRIVATE mapping of a file where you can
> > > > > have a mix of both private and file page thus only if it is a read only
> > > > > GUP) that would get added to the list of existing mapping.
> > > > >
> > > > > So the flow would be:
> > > > >     somefunction_thatuse_gup()
> > > > >     {
> > > > >         ...
> > > > >         GUP(_fast)(vma, ..., fake_anon, fake_vma);
> > > > >         ...
> > > > >     }
> > > > >
> > > > >     GUP(vma, ..., fake_anon, fake_vma)
> > > > >     {
> > > > >         if (vma->flags == ANON) {
> > > > >             // Add the fake anon vma to the anon vma chain as a child
> > > > >             // of current vma
> > > > >         } else {
> > > > >             // Add the fake vma to the mapping tree
> > > > >         }
> > > > >
> > > > >         // The existing GUP except that now it inc mapcount and not
> > > > >         // refcount
> > > > >         GUP_old(..., &nanonymous, &nfiles);
> > > > >
> > > > >         atomic_add(&fake_anon->refcount, nanonymous);
> > > > >         atomic_add(&fake_vma->refcount, nfiles);
> > > > >
> > > > >         return nanonymous + nfiles;
> > > > >     }
> > > >
> > > > Thanks for your idea! This is actually something like I was suggesting back
> > > > at LSF/MM in Deer Valley. There were two downsides to this I remember
> > > > people pointing out:
> > > >
> > > > 1) This cannot really work with __get_user_pages_fast(). You're not allowed
> > > > to get necessary locks to insert new entry into the VMA tree in that
> > > > context. So essentially we'd loose get_user_pages_fast() functionality.
> > > >
> > > > 2) The overhead e.g. for direct IO may be noticeable. You need to allocate
> > > > the fake tracking VMA, get VMA interval tree lock, insert into the tree.
> > > > Then on IO completion you need to queue work to unpin the pages again as you
> > > > cannot remove the fake VMA directly from interrupt context where the IO is
> > > > completed.
> > > >
> > > > You are right that the cost could be amortized if gup() is called for
> > > > multiple consecutive pages however for small IOs there's no help...
> > > >
> > > > So this approach doesn't look like a win to me over using counter in struct
> > > > page and I'd rather try looking into squeezing HMM public page usage of
> > > > struct page so that we can fit that gup counter there as well. I know that
> > > > it may be easier said than done...
> > >
> > > So i want back to the drawing board and first i would like to ascertain
> > > that we all agree on what the objectives are:
> > >
> > >     [O1] Avoid write back from a page still being written by either a
> > >          device or some direct I/O or any other existing user of GUP.
> > >          This would avoid possible file system corruption.
> > >
> > >     [O2] Avoid crash when set_page_dirty() is call on a page that is
> > >          considered clean by core mm (buffer head have been remove and
> > >          with some file system this turns into an ugly mess).
> > >
> > >     [O3] DAX and the device block problems, ie with DAX the page map in
> > >          userspace is the same as the block (persistent memory) and no
> > >          filesystem nor block device understand page as block or pinned
> > >          block.
> > >
> > > For [O3] i don't think any pin count would help in anyway. I believe
> > > that the current long term GUP API that does not allow GUP of DAX is
> > > the only sane solution for now.
> >
> > No, that's not a sane solution, it's an emergency hack.
>
> Then how do you want to solve it ? Knowing pin count does not help
> you, at least i do not see how that would help and if it does then
> my solution allow you to know pin count it is the difference between
> real mapping and mapcount value.

True, pin count doesn't help, and indefinite waits are intolerable, so
I think we need to make "long term" GUP revokable, but otherwise
hopefully use the put_user_page() scheme to replace the use of the pin
count for dax_layout_busy_page().

> > > The real fix would be to teach file-
> > > system about DAX/pinned block so that a pinned block is not reuse
> > > by filesystem.
> >
> > We already have taught filesystems about pinned dax pages, see
> > dax_layout_busy_page(). As much as possible I want to eliminate the
> > concept of "dax pages" as a special case that gets sprinkled
> > throughout the mm.
> >
> > > For [O1] and [O2] i believe a solution with mapcount would work. So
> > > no new struct, no fake vma, nothing like that. In GUP for file back
> > > pages
> >
> > With get_user_pages_fast() we don't know that we have a file-backed
> > page, because we don't have a vma.
>
> You do not need a vma to know that we have PageAnon() for that so my
> solution is just about adding to core GUP page table walker:
>
>     if (!PageAnon(page))
>         atomic_inc(&page->mapcount);

Ah, ok, would need to add proper mapcount manipulation for dax and
audit that nothing makes page-cache assumptions based on a non-zero
mapcount.

> Then in put_user_page() you add the opposite. In page_mkclean() you
> count the number of real mapping and voilà ... you got an answer for
> [O1]. You could use the same count real mapping to get the pin count
> in other place that cares about it but i fails to see why the actual
> pin count value would matter to any one.

Sounds like a could work... devil is in the details.





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux