Re: [PATCH 2/2] mm: thp: fix transparent_hugepage/defrag = madvise || always

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Am 28.08.2018 um 10:18 schrieb Michal Hocko:
> [CC Stefan Priebe who has reported the same/similar issue on openSUSE
>  mailing list recently - the thread starts http://lkml.kernel.org/r/20180820032204.9591-1-aarcange@xxxxxxxxxx]
> 
> On Tue 28-08-18 09:53:21, Michal Hocko wrote:
>> On Thu 23-08-18 12:52:53, Michal Hocko wrote:
>>> On Wed 22-08-18 11:52:50, Andrea Arcangeli wrote:
>>>> On Wed, Aug 22, 2018 at 11:02:14AM +0200, Michal Hocko wrote:
>>> [...]
>>>>> I still have to digest the __GFP_THISNODE thing but I _think_ that the
>>>>> alloc_pages_vma code is just trying to be overly clever and
>>>>> __GFP_THISNODE is not a good fit for it. 
>>>>
>>>> My option 2 did just that, it removed __GFP_THISNODE but only for
>>>> MADV_HUGEPAGE and in general whenever reclaim was activated by
>>>> __GFP_DIRECT_RECLAIM. That is also signal that the user really wants
>>>> THP so then it's less bad to prefer THP over NUMA locality.
>>>>
>>>> For the default which is tuned for short lived allocation, preferring
>>>> local memory is most certainly better win for short lived allocation
>>>> where THP can't help much, this is why I didn't remove __GFP_THISNODE
>>>> from the default defrag policy.
>>>
>>> Yes I agree.
>>
>> I finally got back to this again. I have checked your patch and I am
>> really wondering whether alloc_pages_vma is really the proper place to
>> play these tricks. We already have that mind blowing alloc_hugepage_direct_gfpmask
>> and it should be the proper place to handle this special casing. So what
>> do you think about the following. It should be essentially the same
>> thing. Aka use __GFP_THIS_NODE only when we are doing an optimistic THP
>> allocation. Madvise signalizes you know what you are doing and THP has
>> the top priority. If you care enough about the numa placement then you
>> should better use mempolicy.
> 
> Now the patch is still untested but it compiles at least.

Great - i recompiled the SLES15 kernel with that one applied and will
test if it helps.

Stefan

> ---
> From 88e0ca4c9c403c6046f1c47d5ee17548f9dc841a Mon Sep 17 00:00:00 2001
> From: Michal Hocko <mhocko@xxxxxxxx>
> Date: Tue, 28 Aug 2018 09:59:19 +0200
> Subject: [PATCH] mm, thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings
> 
> Andrea has noticed [1] that a THP allocation might be really disruptive
> when allocated on NUMA system with the local node full or hard to
> reclaim. Stefan has posted an allocation stall report on 4.12 based
> SLES kernel which suggests the same issue:
> [245513.362669] kvm: page allocation stalls for 194572ms, order:9, mode:0x4740ca(__GFP_HIGHMEM|__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE|__GFP_MOVABLE|__GFP_DIRECT_RECLAIM), nodemask=(null)
> [245513.363983] kvm cpuset=/ mems_allowed=0-1
> [245513.364604] CPU: 10 PID: 84752 Comm: kvm Tainted: G        W 4.12.0+98-phSLE15 (unreleased)
> [245513.365258] Hardware name: Supermicro SYS-1029P-WTRT/X11DDW-NT, BIOS 2.0 12/05/2017
> [245513.365905] Call Trace:
> [245513.366535]  dump_stack+0x5c/0x84
> [245513.367148]  warn_alloc+0xe0/0x180
> [245513.367769]  __alloc_pages_slowpath+0x820/0xc90
> [245513.368406]  ? __slab_free+0xa9/0x2f0
> [245513.369048]  ? __slab_free+0xa9/0x2f0
> [245513.369671]  __alloc_pages_nodemask+0x1cc/0x210
> [245513.370300]  alloc_pages_vma+0x1e5/0x280
> [245513.370921]  do_huge_pmd_wp_page+0x83f/0xf00
> [245513.371554]  ? set_huge_zero_page.isra.52.part.53+0x9b/0xb0
> [245513.372184]  ? do_huge_pmd_anonymous_page+0x631/0x6d0
> [245513.372812]  __handle_mm_fault+0x93d/0x1060
> [245513.373439]  handle_mm_fault+0xc6/0x1b0
> [245513.374042]  __do_page_fault+0x230/0x430
> [245513.374679]  ? get_vtime_delta+0x13/0xb0
> [245513.375411]  do_page_fault+0x2a/0x70
> [245513.376145]  ? page_fault+0x65/0x80
> [245513.376882]  page_fault+0x7b/0x80
> [...]
> [245513.382056] Mem-Info:
> [245513.382634] active_anon:126315487 inactive_anon:1612476 isolated_anon:5
>                  active_file:60183 inactive_file:245285 isolated_file:0
>                  unevictable:15657 dirty:286 writeback:1 unstable:0
>                  slab_reclaimable:75543 slab_unreclaimable:2509111
>                  mapped:81814 shmem:31764 pagetables:370616 bounce:0
>                  free:32294031 free_pcp:6233 free_cma:0
> [245513.386615] Node 0 active_anon:254680388kB inactive_anon:1112760kB active_file:240648kB inactive_file:981168kB unevictable:13368kB isolated(anon):0kB isolated(file):0kB mapped:280240kB dirty:1144kB writeback:0kB shmem:95832kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 81225728kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
> [245513.388650] Node 1 active_anon:250583072kB inactive_anon:5337144kB active_file:84kB inactive_file:0kB unevictable:49260kB isolated(anon):20kB isolated(file):0kB mapped:47016kB dirty:0kB writeback:4kB shmem:31224kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 31897600kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
> 
> The defrag mode is "madvise" and from the above report it is clear that
> the THP has been allocated for MADV_HUGEPAGA vma.
> 
> Andrea has identified that the main source of the problem is
> __GFP_THISNODE usage:
> 
> : The problem is that direct compaction combined with the NUMA
> : __GFP_THISNODE logic in mempolicy.c is telling reclaim to swap very
> : hard the local node, instead of failing the allocation if there's no
> : THP available in the local node.
> :
> : Such logic was ok until __GFP_THISNODE was added to the THP allocation
> : path even with MPOL_DEFAULT.
> :
> : The idea behind the __GFP_THISNODE addition, is that it is better to
> : provide local memory in PAGE_SIZE units than to use remote NUMA THP
> : backed memory. That largely depends on the remote latency though, on
> : threadrippers for example the overhead is relatively low in my
> : experience.
> :
> : The combination of __GFP_THISNODE and __GFP_DIRECT_RECLAIM results in
> : extremely slow qemu startup with vfio, if the VM is larger than the
> : size of one host NUMA node. This is because it will try very hard to
> : unsuccessfully swapout get_user_pages pinned pages as result of the
> : __GFP_THISNODE being set, instead of falling back to PAGE_SIZE
> : allocations and instead of trying to allocate THP on other nodes (it
> : would be even worse without vfio type1 GUP pins of course, except it'd
> : be swapping heavily instead).
> 
> Fix this by removing __GFP_THISNODE handling from alloc_pages_vma where
> it doesn't belong and move it to alloc_hugepage_direct_gfpmask where we
> juggle gfp flags for different allocation modes. The rationale is that
> __GFP_THISNODE is helpful in relaxed defrag modes because falling back
> to a different node might be more harmful than the benefit of a large page.
> If the user really requires THP (e.g. by MADV_HUGEPAGE) then the THP has
> a higher priority than local NUMA placement. The later might be controlled
> via NUMA policies to be more fine grained.
> 
> [1] http://lkml.kernel.org/r/20180820032204.9591-1-aarcange@xxxxxxxxxx
> 
> Fixes: 5265047ac301 ("mm, thp: really limit transparent hugepage allocation to local node")
> Reported-by: Stefan Priebe <s.priebe@xxxxxxxxxxxx>
> Debugged-by: Andrea Arcangeli <aarcange@xxxxxxxxxx>
> Signed-off-by: Michal Hocko <mhocko@xxxxxxxx>
> ---
>  mm/huge_memory.c | 10 +++++-----
>  mm/mempolicy.c   | 26 --------------------------
>  2 files changed, 5 insertions(+), 31 deletions(-)
> 
> diff --git a/mm/huge_memory.c b/mm/huge_memory.c
> index c3bc7e9c9a2a..a703c23f8bab 100644
> --- a/mm/huge_memory.c
> +++ b/mm/huge_memory.c
> @@ -634,16 +634,16 @@ static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
>  	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
>  
>  	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
> -		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
> +		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY | __GFP_THISNODE);
>  	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
> -		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
> +		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | __GFP_THISNODE;
>  	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
>  		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
> -							     __GFP_KSWAPD_RECLAIM);
> +							     __GFP_KSWAPD_RECLAIM | __GFP_THISNODE);
>  	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
>  		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
> -							     0);
> -	return GFP_TRANSHUGE_LIGHT;
> +							     __GFP_THISNODE);
> +	return GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
>  }
>  
>  /* Caller must hold page table lock. */
> diff --git a/mm/mempolicy.c b/mm/mempolicy.c
> index da858f794eb6..9f0800885613 100644
> --- a/mm/mempolicy.c
> +++ b/mm/mempolicy.c
> @@ -2026,32 +2026,6 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
>  		goto out;
>  	}
>  
> -	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
> -		int hpage_node = node;
> -
> -		/*
> -		 * For hugepage allocation and non-interleave policy which
> -		 * allows the current node (or other explicitly preferred
> -		 * node) we only try to allocate from the current/preferred
> -		 * node and don't fall back to other nodes, as the cost of
> -		 * remote accesses would likely offset THP benefits.
> -		 *
> -		 * If the policy is interleave, or does not allow the current
> -		 * node in its nodemask, we allocate the standard way.
> -		 */
> -		if (pol->mode == MPOL_PREFERRED &&
> -						!(pol->flags & MPOL_F_LOCAL))
> -			hpage_node = pol->v.preferred_node;
> -
> -		nmask = policy_nodemask(gfp, pol);
> -		if (!nmask || node_isset(hpage_node, *nmask)) {
> -			mpol_cond_put(pol);
> -			page = __alloc_pages_node(hpage_node,
> -						gfp | __GFP_THISNODE, order);
> -			goto out;
> -		}
> -	}
> -
>  	nmask = policy_nodemask(gfp, pol);
>  	preferred_nid = policy_node(gfp, pol, node);
>  	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
> 




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux