On Sat, May 26, 2018 at 5:23 AM, Randy Dunlap <rdunlap@xxxxxxxxxxxxx> wrote: > On 04/20/2018 07:46 AM, Andrey Konovalov wrote: >> This patch updates KASAN documentation to reflect the addition of KHWASAN. >> >> Signed-off-by: Andrey Konovalov <andreyknvl@xxxxxxxxxx> > > Hi, > Just a few corrections below... > >> --- >> Documentation/dev-tools/kasan.rst | 212 +++++++++++++++++------------- >> 1 file changed, 122 insertions(+), 90 deletions(-) >> >> diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst >> index f7a18f274357..bd7859538b73 100644 >> --- a/Documentation/dev-tools/kasan.rst >> +++ b/Documentation/dev-tools/kasan.rst >> @@ -8,11 +8,18 @@ KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides >> a fast and comprehensive solution for finding use-after-free and out-of-bounds >> bugs. >> >> -KASAN uses compile-time instrumentation for checking every memory access, >> -therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is >> -required for detection of out-of-bounds accesses to stack or global variables. >> +KASAN has two modes: classic KASAN (a classic version, similar to user space >> +ASan) and KHWASAN (a version based on memory tagging, similar to user space >> +HWASan). >> >> -Currently KASAN is supported only for the x86_64 and arm64 architectures. >> +KASAN uses compile-time instrumentation to insert validity checks before every >> +memory access, and therefore requires a compiler version that supports that. >> +For classic KASAN you need GCC version 4.9.2 or later. GCC 5.0 or later is >> +required for detection of out-of-bounds accesses on stack and global variables. >> +TODO: compiler requirements for KHWASAN >> + >> +Currently classic KASAN is supported for the x86_64, arm64 and xtensa >> +architectures, and KHWASAN is supported only for arm64. >> >> Usage >> ----- >> @@ -21,12 +28,14 @@ To enable KASAN configure kernel with:: >> >> CONFIG_KASAN = y >> >> -and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and >> -inline are compiler instrumentation types. The former produces smaller binary >> -the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC >> +and choose between CONFIG_KASAN_GENERIC (to enable classic KASAN) and >> +CONFIG_KASAN_HW (to enabled KHWASAN). You also need to choose choose between >> +CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and inline are compiler >> +instrumentation types. The former produces smaller binary the latter is > > smaller binary while the latter is > >> +1.1 - 2 times faster. For classic KASAN inline instrumentation requires GCC >> version 5.0 or later. >> >> -KASAN works with both SLUB and SLAB memory allocators. >> +Both KASAN modes work with both SLUB and SLAB memory allocators. >> For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. >> >> To disable instrumentation for specific files or directories, add a line >> @@ -43,85 +52,80 @@ similar to the following to the respective kernel Makefile: >> Error reports >> ~~~~~~~~~~~~~ >> >> -A typical out of bounds access report looks like this:: >> +A typical out-of-bounds access classic KASAN report looks like this:: >> >> ================================================================== >> - BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 >> - Write of size 1 by task modprobe/1689 >> - ============================================================================= >> - BUG kmalloc-128 (Not tainted): kasan error >> - ----------------------------------------------------------------------------- >> - >> - Disabling lock debugging due to kernel taint >> - INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689 >> - __slab_alloc+0x4b4/0x4f0 >> - kmem_cache_alloc_trace+0x10b/0x190 >> - kmalloc_oob_right+0x3d/0x75 [test_kasan] >> - init_module+0x9/0x47 [test_kasan] >> - do_one_initcall+0x99/0x200 >> - load_module+0x2cb3/0x3b20 >> - SyS_finit_module+0x76/0x80 >> - system_call_fastpath+0x12/0x17 >> - INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080 >> - INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720 >> - >> - Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ >> - Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk >> - Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. >> - Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........ >> - Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ >> - CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98 >> - Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 >> - ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78 >> - ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8 >> - ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558 >> + BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan] >> + Write of size 1 at addr ffff8800696f3d3b by task insmod/2734 >> + >> + CPU: 0 PID: 2734 Comm: insmod Not tainted 4.15.0+ #98 >> + Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 >> Call Trace: >> - [<ffffffff81cc68ae>] dump_stack+0x46/0x58 >> - [<ffffffff811fd848>] print_trailer+0xf8/0x160 >> - [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] >> - [<ffffffff811ff0f5>] object_err+0x35/0x40 >> - [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] >> - [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 >> - [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 >> - [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 >> - [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 >> - [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] >> - [<ffffffff8120a995>] __asan_store1+0x75/0xb0 >> - [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] >> - [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] >> - [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] >> - [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] >> - [<ffffffff810002d9>] do_one_initcall+0x99/0x200 >> - [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 >> - [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 >> - [<ffffffff8110fd70>] ? m_show+0x240/0x240 >> - [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 >> - [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 >> + __dump_stack lib/dump_stack.c:17 >> + dump_stack+0x83/0xbc lib/dump_stack.c:53 >> + print_address_description+0x73/0x280 mm/kasan/report.c:254 >> + kasan_report_error mm/kasan/report.c:352 >> + kasan_report+0x10e/0x220 mm/kasan/report.c:410 >> + __asan_report_store1_noabort+0x17/0x20 mm/kasan/report.c:505 >> + kmalloc_oob_right+0xa8/0xbc [test_kasan] lib/test_kasan.c:42 >> + kmalloc_tests_init+0x16/0x769 [test_kasan] >> + do_one_initcall+0x9e/0x240 init/main.c:832 >> + do_init_module+0x1b6/0x542 kernel/module.c:3462 >> + load_module+0x6042/0x9030 kernel/module.c:3786 >> + SYSC_init_module+0x18f/0x1c0 kernel/module.c:3858 >> + SyS_init_module+0x9/0x10 kernel/module.c:3841 >> + do_syscall_64+0x198/0x480 arch/x86/entry/common.c:287 >> + entry_SYSCALL_64_after_hwframe+0x21/0x86 arch/x86/entry/entry_64.S:251 >> + RIP: 0033:0x7fdd79df99da >> + RSP: 002b:00007fff2229bdf8 EFLAGS: 00000202 ORIG_RAX: 00000000000000af >> + RAX: ffffffffffffffda RBX: 000055c408121190 RCX: 00007fdd79df99da >> + RDX: 00007fdd7a0b8f88 RSI: 0000000000055670 RDI: 00007fdd7a47e000 >> + RBP: 000055c4081200b0 R08: 0000000000000003 R09: 0000000000000000 >> + R10: 00007fdd79df5d0a R11: 0000000000000202 R12: 00007fdd7a0b8f88 >> + R13: 000055c408120090 R14: 0000000000000000 R15: 0000000000000000 >> + >> + Allocated by task 2734: >> + save_stack+0x43/0xd0 mm/kasan/common.c:176 >> + set_track+0x20/0x30 mm/kasan/common.c:188 >> + kasan_kmalloc+0x9a/0xc0 mm/kasan/kasan.c:372 >> + kmem_cache_alloc_trace+0xcd/0x1a0 mm/slub.c:2761 >> + kmalloc ./include/linux/slab.h:512 >> + kmalloc_oob_right+0x56/0xbc [test_kasan] lib/test_kasan.c:36 >> + kmalloc_tests_init+0x16/0x769 [test_kasan] >> + do_one_initcall+0x9e/0x240 init/main.c:832 >> + do_init_module+0x1b6/0x542 kernel/module.c:3462 >> + load_module+0x6042/0x9030 kernel/module.c:3786 >> + SYSC_init_module+0x18f/0x1c0 kernel/module.c:3858 >> + SyS_init_module+0x9/0x10 kernel/module.c:3841 >> + do_syscall_64+0x198/0x480 arch/x86/entry/common.c:287 >> + entry_SYSCALL_64_after_hwframe+0x21/0x86 arch/x86/entry/entry_64.S:251 >> + >> + The buggy address belongs to the object at ffff8800696f3cc0 >> + which belongs to the cache kmalloc-128 of size 128 >> + The buggy address is located 123 bytes inside of >> + 128-byte region [ffff8800696f3cc0, ffff8800696f3d40) >> + The buggy address belongs to the page: >> + page:ffffea0001a5bcc0 count:1 mapcount:0 mapping: (null) index:0x0 >> + flags: 0x100000000000100(slab) >> + raw: 0100000000000100 0000000000000000 0000000000000000 0000000180150015 >> + raw: ffffea0001a8ce40 0000000300000003 ffff88006d001640 0000000000000000 >> + page dumped because: kasan: bad access detected >> + >> Memory state around the buggy address: >> - ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >> - ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc >> - ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >> - ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >> - ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 >> - >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc >> - ^ >> - ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >> - ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >> - ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb >> - ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >> - ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >> + ffff8800696f3c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 fc >> + ffff8800696f3c80: fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00 00 >> + >ffff8800696f3d00: 00 00 00 00 00 00 00 03 fc fc fc fc fc fc fc fc >> + ^ >> + ffff8800696f3d80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc >> + ffff8800696f3e00: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb >> ================================================================== >> >> -The header of the report discribe what kind of bug happened and what kind of >> -access caused it. It's followed by the description of the accessed slub object >> -(see 'SLUB Debug output' section in Documentation/vm/slub.txt for details) and >> -the description of the accessed memory page. >> +The header of the report provides a short summary of what kind of bug happened >> +and what kind of access caused it. It's followed by a stack trace of the bad >> +access, a stack trace of where the accessed memory was allocated (in case bad >> +access happens on a slab object), and a stack trace of where the object was >> +freed (in case of a use-after-free bug report). Next comes a description of >> +the accessed slab object and information about the accessed memory page. >> >> In the last section the report shows memory state around the accessed address. >> Reading this part requires some understanding of how KASAN works. >> @@ -138,18 +142,24 @@ inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h). >> In the report above the arrows point to the shadow byte 03, which means that >> the accessed address is partially accessible. >> >> +For KHWASAN this last report section shows the memory tags around the accessed >> +address (see Implementation details section). >> + >> >> Implementation details >> ---------------------- >> >> +Classic KASAN >> +~~~~~~~~~~~~~ >> + >> From a high level, our approach to memory error detection is similar to that >> of kmemcheck: use shadow memory to record whether each byte of memory is safe >> -to access, and use compile-time instrumentation to check shadow memory on each >> -memory access. >> +to access, and use compile-time instrumentation to insert checks of shadow >> +memory on each memory access. >> >> -AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory >> -(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and >> -offset to translate a memory address to its corresponding shadow address. >> +Classic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB >> +to cover 128TB on x86_64) and uses direct mapping with a scale and offset to >> +translate a memory address to its corresponding shadow address. >> >> Here is the function which translates an address to its corresponding shadow >> address:: >> @@ -162,12 +172,34 @@ address:: >> >> where ``KASAN_SHADOW_SCALE_SHIFT = 3``. >> >> -Compile-time instrumentation used for checking memory accesses. Compiler inserts >> -function calls (__asan_load*(addr), __asan_store*(addr)) before each memory >> -access of size 1, 2, 4, 8 or 16. These functions check whether memory access is >> -valid or not by checking corresponding shadow memory. >> +Compile-time instrumentation is used to insert memory accesses checks. Compiler > > memory access checks. > >> +inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each >> +memory access of size 1, 2, 4, 8 or 16. These functions check whether memory >> +access is valid or not by checking corresponding shadow memory. >> >> GCC 5.0 has possibility to perform inline instrumentation. Instead of making >> function calls GCC directly inserts the code to check the shadow memory. >> This option significantly enlarges kernel but it gives x1.1-x2 performance >> boost over outline instrumented kernel. >> + >> +KHWASAN >> +~~~~~~~ >> + >> +KHWASAN uses the Top Byte Ignore (TBI) feature of modern arm64 CPUs to store >> +a pointer tag in the top byte of kernel pointers. KHWASAN also uses shadow >> +memory to store memory tags associated with each 16-byte memory cell (therefore >> +it dedicates 1/16th of the kernel memory for shadow memory). >> + >> +On each memory allocation KHWASAN generates a random tag, tags allocated memory >> +with this tag, and embeds this tag into the returned pointer. KHWASAN uses >> +compile-time instrumentation to insert checks before each memory access. These >> +checks make sure that tag of the memory that is being accessed is equal to tag >> +ofthe pointer that is used to access this memory. In case of a tag mismatch > > of the > >> +KHWASAN prints a bug report. >> + >> +KHWASAN also has two instrumentation modes (outline, that emits callbacks to >> +check memory accesses; and inline, that performs the shadow memory checks >> +inline). With outline instrumentation mode, a bug report is simply printed >> +from the function that performs the access check. With inline instrumentation >> +a brk instruction is emitted by the compiler, and a dedicated brk handler is >> +used to print KHWASAN reports. >> > > thanks, > -- > ~Randy Hi Randy, Will fix all in v3. Thanks!