Re: [PATCH 05/16] mm: Protect VMA modifications using VMA sequence count

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Thu, Aug 10, 2017 at 10:27:50AM +0200, Laurent Dufour wrote:
> On 10/08/2017 02:58, Kirill A. Shutemov wrote:
> > On Wed, Aug 09, 2017 at 12:43:33PM +0200, Laurent Dufour wrote:
> >> On 09/08/2017 12:12, Kirill A. Shutemov wrote:
> >>> On Tue, Aug 08, 2017 at 04:35:38PM +0200, Laurent Dufour wrote:
> >>>> The VMA sequence count has been introduced to allow fast detection of
> >>>> VMA modification when running a page fault handler without holding
> >>>> the mmap_sem.
> >>>>
> >>>> This patch provides protection agains the VMA modification done in :
> >>>> 	- madvise()
> >>>> 	- mremap()
> >>>> 	- mpol_rebind_policy()
> >>>> 	- vma_replace_policy()
> >>>> 	- change_prot_numa()
> >>>> 	- mlock(), munlock()
> >>>> 	- mprotect()
> >>>> 	- mmap_region()
> >>>> 	- collapse_huge_page()
> >>>
> >>> I don't thinks it's anywhere near complete list of places where we touch
> >>> vm_flags. What is your plan for the rest?
> >>
> >> The goal is only to protect places where change to the VMA is impacting the
> >> page fault handling. If you think I missed one, please advise.
> > 
> > That's very fragile approach. We rely here too much on specific compiler behaviour.
> > 
> > Any write access to vm_flags can, in theory, be translated to several
> > write accesses. For instance with setting vm_flags to 0 in the middle,
> > which would result in sigfault on page fault to the vma.
> 
> Indeed, just setting vm_flags to 0 will not result in sigfault, the real
> job is done when the pte are updated and the bits allowing access are
> cleared. Access to the pte is controlled by the pte lock.
> Page fault handler is triggered based on the pte bits, not the content of
> vm_flags and the speculative page fault is checking for the vma again once
> the pte lock is held. So there is no concurrency when dealing with the pte
> bits.

Suppose we are getting page fault to readable VMA, pte is clear at the
time of page fault. In this case we need to consult vm_flags to check if
the vma is read-accessible.

If by the time of check vm_flags happend to be '0' we would get SIGSEGV as
the vma appears to be non-readable.

Where is my logic faulty?

> Regarding the compiler behaviour, there are memory barriers and locking
> which should prevent that.

Which locks barriers are you talking about?

We need at least READ_ONCE/WRITE_ONCE to access vm_flags everywhere.

-- 
 Kirill A. Shutemov

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@xxxxxxxxx.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@xxxxxxxxx";> email@xxxxxxxxx </a>



[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]
  Powered by Linux