Error paths in hugetlb_cow() and hugetlb_no_page() may free a newly allocated huge page. If a reservation was associated with the huge page, alloc_huge_page() consumed the reservation while allocating. When the newly allocated page is freed in free_huge_page(), it will increment the global reservation count. However, the reservation entry in the reserve map will remain. This is not an issue for shared mappings as the entry in the reserve map indicates a reservation exists. But, an entry in a private mapping reserve map indicates the reservation was consumed and no longer exists. This results in an inconsistency between the reserve map and the global reservation count. This 'leaks' a reserved huge page. Create a new routine restore_reserve_on_error() to restore the reserve entry in these specific error paths. This routine makes use of a new function vma_add_reservation() which will add a reserve entry for a specific address/page. In general, these error paths were rarely (if ever) taken on most architectures. However, powerpc contained arch specific code that that resulted in an extra fault and execution of these error paths on all private mappings. Fixes: 67961f9db8c4 ("mm/hugetlb: fix huge page reserve accounting for private mappings) Cc: stable@xxxxxxxxxxxxxxx Reported-by: Jan Stancek <jstancek@xxxxxxxxxx> Signed-off-by: Mike Kravetz <mike.kravetz@xxxxxxxxxx> --- mm/hugetlb.c | 66 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ec49d9e..418bf01 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1826,11 +1826,17 @@ static void return_unused_surplus_pages(struct hstate *h, * is not the case is if a reserve map was changed between calls. It * is the responsibility of the caller to notice the difference and * take appropriate action. + * + * vma_add_reservation is used in error paths where a reservation must + * be restored when a newly allocated huge page must be freed. It is + * to be called after calling vma_needs_reservation to determine if a + * reservation exists. */ enum vma_resv_mode { VMA_NEEDS_RESV, VMA_COMMIT_RESV, VMA_END_RESV, + VMA_ADD_RESV, }; static long __vma_reservation_common(struct hstate *h, struct vm_area_struct *vma, unsigned long addr, @@ -1856,6 +1862,14 @@ static long __vma_reservation_common(struct hstate *h, region_abort(resv, idx, idx + 1); ret = 0; break; + case VMA_ADD_RESV: + if (vma->vm_flags & VM_MAYSHARE) + ret = region_add(resv, idx, idx + 1); + else { + region_abort(resv, idx, idx + 1); + ret = region_del(resv, idx, idx + 1); + } + break; default: BUG(); } @@ -1903,6 +1917,56 @@ static void vma_end_reservation(struct hstate *h, (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); } +static long vma_add_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); +} + +/* + * This routine is called to restore a reservation on error paths. In the + * specific error paths, a huge page was allocated (via alloc_huge_page) + * and is about to be freed. If a reservation for the page existed, + * alloc_huge_page would have consumed the reservation and set PagePrivate + * in the newly allocated page. When the page is freed via free_huge_page, + * the global reservation count will be incremented if PagePrivate is set. + * However, free_huge_page can not adjust the reserve map. Adjust the + * reserve map here to be consistent with global reserve count adjustments + * to be made by free_huge_page. + */ +static void restore_reserve_on_error(struct hstate *h, + struct vm_area_struct *vma, unsigned long address, + struct page *page) +{ + if (unlikely(PagePrivate(page))) { + long rc = vma_needs_reservation(h, vma, address); + + if (unlikely(rc < 0)) { + /* + * Rare out of memory condition in reserve map + * manipulation. Clear PagePrivate so that + * global reserve count will not be incremented + * by free_huge_page. This will make it appear + * as though the reservation for this page was + * consumed. This may prevent the task from + * faulting in the page at a later time. This + * is better than inconsistent global huge page + * accounting of reserve counts. + */ + ClearPagePrivate(page); + } else if (rc) { + rc = vma_add_reservation(h, vma, address); + if (unlikely(rc < 0)) + /* + * See above comment about rare out of + * memory condition. + */ + ClearPagePrivate(page); + } else + vma_end_reservation(h, vma, address); + } +} + struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { @@ -3498,6 +3562,7 @@ retry_avoidcopy: spin_unlock(ptl); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); out_release_all: + restore_reserve_on_error(h, vma, address, new_page); put_page(new_page); out_release_old: put_page(old_page); @@ -3680,6 +3745,7 @@ backout: spin_unlock(ptl); backout_unlocked: unlock_page(page); + restore_reserve_on_error(h, vma, address, page); put_page(page); goto out; } -- 2.7.4 -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>