On Wed, May 25, 2016 at 6:49 PM, Joonsoo Kim <js1304@xxxxxxxxx> wrote: > 2016-05-25 6:15 GMT+09:00 Thomas Garnier <thgarnie@xxxxxxxxxx>: >> Implements Freelist randomization for the SLUB allocator. It was >> previous implemented for the SLAB allocator. Both use the same >> configuration option (CONFIG_SLAB_FREELIST_RANDOM). >> >> The list is randomized during initialization of a new set of pages. The >> order on different freelist sizes is pre-computed at boot for >> performance. Each kmem_cache has its own randomized freelist. This >> security feature reduces the predictability of the kernel SLUB allocator >> against heap overflows rendering attacks much less stable. >> >> For example these attacks exploit the predictability of the heap: >> - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) >> - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) >> >> Performance results: >> >> slab_test impact is between 3% to 4% on average: >> >> Before: >> >> Single thread testing >> ===================== >> 1. Kmalloc: Repeatedly allocate then free test >> 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles >> 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles >> 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles >> 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles >> 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles >> 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles >> 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles >> 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles >> 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles >> 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles >> 2. Kmalloc: alloc/free test >> 100000 times kmalloc(8)/kfree -> 70 cycles >> 100000 times kmalloc(16)/kfree -> 70 cycles >> 100000 times kmalloc(32)/kfree -> 70 cycles >> 100000 times kmalloc(64)/kfree -> 70 cycles >> 100000 times kmalloc(128)/kfree -> 70 cycles >> 100000 times kmalloc(256)/kfree -> 69 cycles >> 100000 times kmalloc(512)/kfree -> 70 cycles >> 100000 times kmalloc(1024)/kfree -> 73 cycles >> 100000 times kmalloc(2048)/kfree -> 72 cycles >> 100000 times kmalloc(4096)/kfree -> 71 cycles >> >> After: >> >> Single thread testing >> ===================== >> 1. Kmalloc: Repeatedly allocate then free test >> 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles >> 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles >> 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles >> 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles >> 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles >> 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles >> 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles >> 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles >> 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles >> 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles >> 2. Kmalloc: alloc/free test >> 100000 times kmalloc(8)/kfree -> 66 cycles >> 100000 times kmalloc(16)/kfree -> 66 cycles >> 100000 times kmalloc(32)/kfree -> 66 cycles >> 100000 times kmalloc(64)/kfree -> 66 cycles >> 100000 times kmalloc(128)/kfree -> 65 cycles >> 100000 times kmalloc(256)/kfree -> 67 cycles >> 100000 times kmalloc(512)/kfree -> 67 cycles >> 100000 times kmalloc(1024)/kfree -> 64 cycles >> 100000 times kmalloc(2048)/kfree -> 67 cycles >> 100000 times kmalloc(4096)/kfree -> 67 cycles >> >> Kernbench, before: >> >> Average Optimal load -j 12 Run (std deviation): >> Elapsed Time 101.873 (1.16069) >> User Time 1045.22 (1.60447) >> System Time 88.969 (0.559195) >> Percent CPU 1112.9 (13.8279) >> Context Switches 189140 (2282.15) >> Sleeps 99008.6 (768.091) >> >> After: >> >> Average Optimal load -j 12 Run (std deviation): >> Elapsed Time 102.47 (0.562732) >> User Time 1045.3 (1.34263) >> System Time 88.311 (0.342554) >> Percent CPU 1105.8 (6.49444) >> Context Switches 189081 (2355.78) >> Sleeps 99231.5 (800.358) >> >> Signed-off-by: Thomas Garnier <thgarnie@xxxxxxxxxx> >> --- >> Based on 0e01df100b6bf22a1de61b66657502a6454153c5 >> --- >> include/linux/slub_def.h | 8 +++ >> init/Kconfig | 4 +- >> mm/slub.c | 133 ++++++++++++++++++++++++++++++++++++++++++++--- >> 3 files changed, 136 insertions(+), 9 deletions(-) >> >> diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h >> index 665cd0c..22d487e 100644 >> --- a/include/linux/slub_def.h >> +++ b/include/linux/slub_def.h >> @@ -56,6 +56,9 @@ struct kmem_cache_order_objects { >> unsigned long x; >> }; >> >> +/* Index used for freelist randomization */ >> +typedef unsigned int freelist_idx_t; >> + >> /* >> * Slab cache management. >> */ >> @@ -99,6 +102,11 @@ struct kmem_cache { >> */ >> int remote_node_defrag_ratio; >> #endif >> + >> +#ifdef CONFIG_SLAB_FREELIST_RANDOM >> + freelist_idx_t *random_seq; >> +#endif >> + >> struct kmem_cache_node *node[MAX_NUMNODES]; >> }; >> >> diff --git a/init/Kconfig b/init/Kconfig >> index a9c4aefd..fbb6678 100644 >> --- a/init/Kconfig >> +++ b/init/Kconfig >> @@ -1771,10 +1771,10 @@ endchoice >> >> config SLAB_FREELIST_RANDOM >> default n >> - depends on SLAB >> + depends on SLAB || SLUB >> bool "SLAB freelist randomization" >> help >> - Randomizes the freelist order used on creating new SLABs. This >> + Randomizes the freelist order used on creating new pages. This >> security feature reduces the predictability of the kernel slab >> allocator against heap overflows. >> >> diff --git a/mm/slub.c b/mm/slub.c >> index 825ff45..217aa8a 100644 >> --- a/mm/slub.c >> +++ b/mm/slub.c >> @@ -1405,6 +1405,109 @@ static inline struct page *alloc_slab_page(struct kmem_cache *s, >> return page; >> } >> >> +#ifdef CONFIG_SLAB_FREELIST_RANDOM >> +/* Pre-initialize the random sequence cache */ >> +static int init_cache_random_seq(struct kmem_cache *s) >> +{ >> + int err; >> + unsigned long i, count = oo_objects(s->oo); >> + >> + err = cache_random_seq_create(s, count, GFP_KERNEL); >> + if (err) { >> + pr_err("SLUB: Unable to initialize free list for %s\n", >> + s->name); >> + return err; >> + } >> + >> + /* Transform to an offset on the set of pages */ >> + if (s->random_seq) { >> + for (i = 0; i < count; i++) >> + s->random_seq[i] *= s->size; >> + } >> + return 0; >> +} >> + >> +/* Initialize each random sequence freelist per cache */ >> +static void __init init_freelist_randomization(void) >> +{ >> + struct kmem_cache *s; >> + >> + mutex_lock(&slab_mutex); >> + >> + list_for_each_entry(s, &slab_caches, list) >> + init_cache_random_seq(s); >> + >> + mutex_unlock(&slab_mutex); >> +} >> + >> +/* Get the next entry on the pre-computed freelist randomized */ >> +static void *next_freelist_entry(struct kmem_cache *s, struct page *page, >> + unsigned long *pos, void *start, >> + unsigned long page_limit, >> + unsigned long freelist_count) >> +{ >> + freelist_idx_t idx; >> + >> + /* >> + * If the target page allocation failed, the number of objects on the >> + * page might be smaller than the usual size defined by the cache. >> + */ >> + do { >> + idx = s->random_seq[*pos]; >> + *pos += 1; >> + if (*pos >= freelist_count) >> + *pos = 0; >> + } while (unlikely(idx >= page_limit)); >> + >> + return (char *)start + idx; >> +} >> + >> +/* Shuffle the single linked freelist based on a random pre-computed sequence */ >> +static bool shuffle_freelist(struct kmem_cache *s, struct page *page) >> +{ >> + void *start; >> + void *cur; >> + void *next; >> + unsigned long idx, pos, page_limit, freelist_count; >> + >> + if (page->objects < 2 || !s->random_seq) >> + return false; >> + >> + freelist_count = oo_objects(s->oo); >> + pos = get_random_int() % freelist_count; >> + >> + page_limit = page->objects * s->size; >> + start = fixup_red_left(s, page_address(page)); >> + >> + /* First entry is used as the base of the freelist */ >> + cur = next_freelist_entry(s, page, &pos, start, page_limit, >> + freelist_count); >> + page->freelist = cur; >> + >> + for (idx = 1; idx < page->objects; idx++) { >> + setup_object(s, page, cur); >> + next = next_freelist_entry(s, page, &pos, start, page_limit, >> + freelist_count); >> + set_freepointer(s, cur, next); >> + cur = next; >> + } >> + setup_object(s, page, cur); >> + set_freepointer(s, cur, NULL); >> + >> + return true; >> +} >> +#else >> +static inline int init_cache_random_seq(struct kmem_cache *s) >> +{ >> + return 0; >> +} >> +static inline void init_freelist_randomization(void) { } >> +static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) >> +{ >> + return false; >> +} >> +#endif /* CONFIG_SLAB_FREELIST_RANDOM */ >> + >> static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) >> { >> struct page *page; >> @@ -1412,6 +1515,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) >> gfp_t alloc_gfp; >> void *start, *p; >> int idx, order; >> + bool shuffle; >> >> flags &= gfp_allowed_mask; >> >> @@ -1473,15 +1577,19 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) >> >> kasan_poison_slab(page); >> >> - for_each_object_idx(p, idx, s, start, page->objects) { >> - setup_object(s, page, p); >> - if (likely(idx < page->objects)) >> - set_freepointer(s, p, p + s->size); >> - else >> - set_freepointer(s, p, NULL); >> + shuffle = shuffle_freelist(s, page); >> + >> + if (!shuffle) { >> + for_each_object_idx(p, idx, s, start, page->objects) { >> + setup_object(s, page, p); >> + if (likely(idx < page->objects)) >> + set_freepointer(s, p, p + s->size); >> + else >> + set_freepointer(s, p, NULL); >> + } >> + page->freelist = fixup_red_left(s, start); >> } >> >> - page->freelist = fixup_red_left(s, start); >> page->inuse = page->objects; >> page->frozen = 1; >> >> @@ -3207,6 +3315,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s) >> >> void __kmem_cache_release(struct kmem_cache *s) >> { >> + cache_random_seq_destroy(s); >> free_percpu(s->cpu_slab); >> free_kmem_cache_nodes(s); >> } >> @@ -3431,6 +3540,13 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) >> #ifdef CONFIG_NUMA >> s->remote_node_defrag_ratio = 1000; >> #endif >> + >> + /* Initialize the pre-computed randomized freelist if slab is up */ >> + if (slab_state >= UP) { >> + if (init_cache_random_seq(s)) >> + goto error; >> + } >> + >> if (!init_kmem_cache_nodes(s)) >> goto error; >> >> @@ -3947,6 +4063,9 @@ void __init kmem_cache_init(void) >> setup_kmalloc_cache_index_table(); >> create_kmalloc_caches(0); >> >> + /* Setup random freelists for each cache */ >> + init_freelist_randomization(); > > dma kmalloc caches are initialized with slab_state = UP. > That means that it's random_seq is initialized twice and > some memory would leak. > > Maybe, you need to check if random_seq is already initialized > or not in init_cache_randome_seq(). Thanks, I will look into that. > > Others look fine to me. > Thanks, I will move to PATCH on next iteration (based on linux-next related to the other thread). > Thanks. -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>