Make sense. I think it is still valuable to randomize earlier pages. I will adapt the code, test and send patch v4. Thanks for the quick feedback, Thomas On Mon, Apr 25, 2016 at 5:40 PM, Joonsoo Kim <iamjoonsoo.kim@xxxxxxx> wrote: > On Mon, Apr 25, 2016 at 01:39:23PM -0700, Thomas Garnier wrote: >> Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the >> SLAB freelist. The list is randomized during initialization of a new set >> of pages. The order on different freelist sizes is pre-computed at boot >> for performance. Each kmem_cache has its own randomized freelist except >> early on boot where global lists are used. This security feature reduces >> the predictability of the kernel SLAB allocator against heap overflows >> rendering attacks much less stable. >> >> For example this attack against SLUB (also applicable against SLAB) >> would be affected: >> https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ >> >> Also, since v4.6 the freelist was moved at the end of the SLAB. It means >> a controllable heap is opened to new attacks not yet publicly discussed. >> A kernel heap overflow can be transformed to multiple use-after-free. >> This feature makes this type of attack harder too. >> >> To generate entropy, we use get_random_bytes_arch because 0 bits of >> entropy is available in the boot stage. In the worse case this function >> will fallback to the get_random_bytes sub API. We also generate a shift >> random number to shift pre-computed freelist for each new set of pages. >> >> The config option name is not specific to the SLAB as this approach will >> be extended to other allocators like SLUB. >> >> Performance results highlighted no major changes: >> >> slab_test 1 run on boot. Difference only seen on the 2048 size test >> being the worse case scenario covered by freelist randomization. New >> slab pages are constantly being created on the 10000 allocations. >> Variance should be mainly due to getting new pages every few >> allocations. >> >> Before: >> >> Single thread testing >> ===================== >> 1. Kmalloc: Repeatedly allocate then free test >> 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles >> 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles >> 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles >> 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles >> 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles >> 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles >> 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles >> 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles >> 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles >> 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles >> 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles >> 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles >> 2. Kmalloc: alloc/free test >> 10000 times kmalloc(8)/kfree -> 121 cycles >> 10000 times kmalloc(16)/kfree -> 121 cycles >> 10000 times kmalloc(32)/kfree -> 121 cycles >> 10000 times kmalloc(64)/kfree -> 121 cycles >> 10000 times kmalloc(128)/kfree -> 121 cycles >> 10000 times kmalloc(256)/kfree -> 119 cycles >> 10000 times kmalloc(512)/kfree -> 119 cycles >> 10000 times kmalloc(1024)/kfree -> 119 cycles >> 10000 times kmalloc(2048)/kfree -> 119 cycles >> 10000 times kmalloc(4096)/kfree -> 121 cycles >> 10000 times kmalloc(8192)/kfree -> 119 cycles >> 10000 times kmalloc(16384)/kfree -> 119 cycles >> >> After: >> >> Single thread testing >> ===================== >> 1. Kmalloc: Repeatedly allocate then free test >> 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles >> 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles >> 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles >> 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles >> 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles >> 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles >> 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles >> 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles >> 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles >> 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles >> 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles >> 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles >> 2. Kmalloc: alloc/free test >> 10000 times kmalloc(8)/kfree -> 121 cycles >> 10000 times kmalloc(16)/kfree -> 121 cycles >> 10000 times kmalloc(32)/kfree -> 123 cycles >> 10000 times kmalloc(64)/kfree -> 142 cycles >> 10000 times kmalloc(128)/kfree -> 121 cycles >> 10000 times kmalloc(256)/kfree -> 119 cycles >> 10000 times kmalloc(512)/kfree -> 119 cycles >> 10000 times kmalloc(1024)/kfree -> 119 cycles >> 10000 times kmalloc(2048)/kfree -> 119 cycles >> 10000 times kmalloc(4096)/kfree -> 119 cycles >> 10000 times kmalloc(8192)/kfree -> 119 cycles >> 10000 times kmalloc(16384)/kfree -> 119 cycles >> >> Signed-off-by: Thomas Garnier <thgarnie@xxxxxxxxxx> >> --- >> Based on next-20160422 >> --- >> include/linux/slab_def.h | 4 + >> init/Kconfig | 9 ++ >> mm/slab.c | 213 ++++++++++++++++++++++++++++++++++++++++++++++- >> 3 files changed, 224 insertions(+), 2 deletions(-) >> >> diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h >> index 9edbbf3..182ec26 100644 >> --- a/include/linux/slab_def.h >> +++ b/include/linux/slab_def.h >> @@ -80,6 +80,10 @@ struct kmem_cache { >> struct kasan_cache kasan_info; >> #endif >> >> +#ifdef CONFIG_FREELIST_RANDOM >> + void *random_seq; >> +#endif >> + >> struct kmem_cache_node *node[MAX_NUMNODES]; >> }; >> >> diff --git a/init/Kconfig b/init/Kconfig >> index 0c66640..73453d0 100644 >> --- a/init/Kconfig >> +++ b/init/Kconfig >> @@ -1742,6 +1742,15 @@ config SLOB >> >> endchoice >> >> +config FREELIST_RANDOM >> + default n >> + depends on SLAB >> + bool "SLAB freelist randomization" >> + help >> + Randomizes the freelist order used on creating new SLABs. This >> + security feature reduces the predictability of the kernel slab >> + allocator against heap overflows. >> + >> config SLUB_CPU_PARTIAL >> default y >> depends on SLUB && SMP >> diff --git a/mm/slab.c b/mm/slab.c >> index b82ee6b..89eb617 100644 >> --- a/mm/slab.c >> +++ b/mm/slab.c >> @@ -116,6 +116,7 @@ >> #include <linux/kmemcheck.h> >> #include <linux/memory.h> >> #include <linux/prefetch.h> >> +#include <linux/log2.h> >> >> #include <net/sock.h> >> >> @@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index) >> } >> } >> >> +#ifdef CONFIG_FREELIST_RANDOM >> +static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list, >> + size_t count) >> +{ >> + size_t i; >> + unsigned int rand; >> + >> + for (i = 0; i < count; i++) >> + list[i] = i; >> + >> + /* Fisher-Yates shuffle */ >> + for (i = count - 1; i > 0; i--) { >> + rand = prandom_u32_state(state); >> + rand %= (i + 1); >> + swap(list[i], list[rand]); >> + } >> +} >> + >> +/* Create a random sequence per cache */ >> +static void cache_random_seq_create(struct kmem_cache *cachep) >> +{ >> + unsigned int seed, count = cachep->num; >> + struct rnd_state state; >> + >> + if (count < 2) >> + return; >> + >> + cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL); >> + BUG_ON(cachep->random_seq == NULL); > > Hello, > > Please make function return int and propagate error to the cache creator. > >> + >> + /* Get best entropy at this stage */ >> + get_random_bytes_arch(&seed, sizeof(seed)); >> + prandom_seed_state(&state, seed); >> + >> + freelist_randomize(&state, cachep->random_seq, count); >> +} >> + >> +/* Destroy the per-cache random freelist sequence */ >> +static void cache_random_seq_destroy(struct kmem_cache *cachep) >> +{ >> + kfree(cachep->random_seq); >> + cachep->random_seq = NULL; >> +} >> + >> +/* >> + * Global static list are used when pre-computed cache list are not yet >> + * available. Lists of different sizes are created to optimize performance on >> + * SLABS with different object counts. >> + */ >> +static freelist_idx_t freelist_random_seq_2[2]; >> +static freelist_idx_t freelist_random_seq_4[4]; >> +static freelist_idx_t freelist_random_seq_8[8]; >> +static freelist_idx_t freelist_random_seq_16[16]; >> +static freelist_idx_t freelist_random_seq_32[32]; >> +static freelist_idx_t freelist_random_seq_64[64]; >> +static freelist_idx_t freelist_random_seq_128[128]; >> +static freelist_idx_t freelist_random_seq_256[256]; >> +const static struct m_list { >> + size_t count; >> + freelist_idx_t *list; >> +} freelist_random_seqs[] = { >> + { ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 }, >> + { ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 }, >> + { ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 }, >> + { ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 }, >> + { ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 }, >> + { ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 }, >> + { ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 }, >> + { ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 }, >> +}; > > I'd like to remove this global static list even if we can't get random > sequence in early boot-up process. In this stage that kernel is not > yet initialized, malicious user cannot do anything so random sequence > doesn't give any more security. After kernel initialization, we will > use per cache random sequence so problem suface is really small. If you > want to randomize freelist sequence even in this case, you can manually > permute the sequence with calling prandom_u32_state(). But, I don't > think it is necessary. > > Thanks. > >> + >> +/* Pre-compute the global pre-computed lists early at boot */ >> +static void __init freelist_random_init(void) >> +{ >> + unsigned int seed; >> + size_t i; >> + struct rnd_state state; >> + >> + /* Get best entropy available at this stage */ >> + get_random_bytes_arch(&seed, sizeof(seed)); >> + prandom_seed_state(&state, seed); >> + >> + for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) { >> + freelist_randomize(&state, freelist_random_seqs[i].list, >> + freelist_random_seqs[i].count); >> + } >> +} >> +#else >> +static inline void __init freelist_random_init(void) { } >> +static inline void cache_random_seq_create(struct kmem_cache *cachep) { } >> +static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } >> +#endif /* CONFIG_FREELIST_RANDOM */ >> + >> + >> /* >> * Initialisation. Called after the page allocator have been initialised and >> * before smp_init(). >> @@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void) >> if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) >> slab_max_order = SLAB_MAX_ORDER_HI; >> >> + freelist_random_init(); >> + >> /* Bootstrap is tricky, because several objects are allocated >> * from caches that do not exist yet: >> * 1) initialize the kmem_cache cache: it contains the struct >> @@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep) >> int i; >> struct kmem_cache_node *n; >> >> + cache_random_seq_destroy(cachep); >> + >> free_percpu(cachep->cpu_cache); >> >> /* NUMA: free the node structures */ >> @@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) >> #endif >> } >> >> +#ifdef CONFIG_FREELIST_RANDOM >> +/* Hold information during a freelist initialization */ >> +struct freelist_init_state { >> + unsigned int padding; >> + unsigned int pos; >> + unsigned int count; >> + unsigned int rand; >> + struct m_list freelist_random_seq; >> +}; >> + >> +/* Select the right pre-computed list and initialize state */ >> +static void freelist_state_initialize(struct freelist_init_state *state, >> + struct kmem_cache *cachep, >> + unsigned int count) >> +{ >> + unsigned int idx; >> + const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1; >> + >> + memset(state, 0, sizeof(*state)); >> + state->count = count; >> + state->pos = 0; >> + >> + /* Use best entropy available to define a random shift */ >> + get_random_bytes_arch(&state->rand, sizeof(state->rand)); >> + >> + if (cachep->random_seq) { >> + state->freelist_random_seq.list = cachep->random_seq; >> + state->freelist_random_seq.count = count; >> + } else { >> + /* count is always >= 2 */ >> + idx = ilog2(count) - 1; >> + if (idx >= last_idx) >> + idx = last_idx; >> + else if (roundup_pow_of_two(idx + 1) != count) >> + idx++; >> + state->freelist_random_seq = freelist_random_seqs[idx]; >> + } >> +} >> + >> +/* Get the next entry on the list depending on the target list size */ >> +static freelist_idx_t get_next_entry(struct freelist_init_state *state) >> +{ >> + freelist_idx_t ret; >> + >> + if (state->pos == state->freelist_random_seq.count) { >> + state->padding += state->pos; >> + state->pos = 0; >> + } >> + >> + /* Randomize the entry using the random shift */ >> + ret = state->freelist_random_seq.list[state->pos++]; >> + ret = (ret + state->rand) % state->freelist_random_seq.count; >> + return ret; >> +} >> + >> +static freelist_idx_t next_random_slot(struct freelist_init_state *state) >> +{ >> + freelist_idx_t entry; >> + >> + do { >> + entry = get_next_entry(state); >> + } while ((entry + state->padding) >= state->count); >> + >> + return entry + state->padding; >> +} >> + >> +/* >> + * Shuffle the freelist initialization state based on pre-computed lists. >> + * return true if the list was successfully shuffled, false otherwise. >> + */ >> +static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) >> +{ >> + unsigned int objfreelist, i, count = cachep->num; >> + struct freelist_init_state state; >> + >> + if (count < 2) >> + return false; >> + >> + objfreelist = 0; >> + freelist_state_initialize(&state, cachep, count); >> + >> + /* Take the first random entry as the objfreelist */ >> + if (OBJFREELIST_SLAB(cachep)) { >> + objfreelist = next_random_slot(&state); >> + page->freelist = index_to_obj(cachep, page, objfreelist) + >> + obj_offset(cachep); >> + count--; >> + } >> + for (i = 0; i < count; i++) >> + set_free_obj(page, i, next_random_slot(&state)); >> + >> + if (OBJFREELIST_SLAB(cachep)) >> + set_free_obj(page, i, objfreelist); >> + return true; >> +} >> +#else >> +static inline bool shuffle_freelist(struct kmem_cache *cachep, >> + struct page *page) >> +{ >> + return false; >> +} >> +#endif /* CONFIG_FREELIST_RANDOM */ >> + >> static void cache_init_objs(struct kmem_cache *cachep, >> struct page *page) >> { >> int i; >> void *objp; >> + bool shuffled; >> >> cache_init_objs_debug(cachep, page); >> >> - if (OBJFREELIST_SLAB(cachep)) { >> + /* Try to randomize the freelist if enabled */ >> + shuffled = shuffle_freelist(cachep, page); >> + >> + if (!shuffled && OBJFREELIST_SLAB(cachep)) { >> page->freelist = index_to_obj(cachep, page, cachep->num - 1) + >> obj_offset(cachep); >> } >> @@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep, >> kasan_poison_object_data(cachep, objp); >> } >> >> - set_free_obj(page, i, i); >> + if (!shuffled) >> + set_free_obj(page, i, i); >> } >> } >> >> @@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) >> int shared = 0; >> int batchcount = 0; >> >> + cache_random_seq_create(cachep); >> + >> if (!is_root_cache(cachep)) { >> struct kmem_cache *root = memcg_root_cache(cachep); >> limit = root->limit; >> -- >> 2.8.0.rc3.226.g39d4020 >> >> -- >> To unsubscribe, send a message with 'unsubscribe linux-mm' in >> the body to majordomo@xxxxxxxxx. For more info on Linux MM, >> see: http://www.linux-mm.org/ . >> Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a> -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>