Provide an optional config (CONFIG_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Netperf average on 10 runs: threads,base,change 16,576943.10,585905.90 (101.55%) 32,564082.00,569741.20 (101.00%) 48,558334.30,561851.20 (100.63%) 64,552025.20,556448.30 (100.80%) 80,552294.40,551743.10 (99.90%) 96,552435.30,547529.20 (99.11%) 112,551320.60,550183.20 (99.79%) 128,549138.30,550542.70 (100.26%) 144,549344.50,544529.10 (99.12%) 160,550360.80,539929.30 (98.10%) slab_test 1 run on boot. After is faster except for odd result on size 2048. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 137 cycles kfree -> 126 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 119 cycles 10000 times kmalloc(32) -> 112 cycles kfree -> 119 cycles 10000 times kmalloc(64) -> 126 cycles kfree -> 123 cycles 10000 times kmalloc(128) -> 135 cycles kfree -> 131 cycles 10000 times kmalloc(256) -> 165 cycles kfree -> 104 cycles 10000 times kmalloc(512) -> 174 cycles kfree -> 126 cycles 10000 times kmalloc(1024) -> 242 cycles kfree -> 160 cycles 10000 times kmalloc(2048) -> 478 cycles kfree -> 239 cycles 10000 times kmalloc(4096) -> 747 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 774 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 849 cycles kfree -> 430 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 118 cycles 10000 times kmalloc(16)/kfree -> 118 cycles 10000 times kmalloc(32)/kfree -> 118 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 118 cycles 10000 times kmalloc(256)/kfree -> 115 cycles 10000 times kmalloc(512)/kfree -> 115 cycles 10000 times kmalloc(1024)/kfree -> 115 cycles 10000 times kmalloc(2048)/kfree -> 115 cycles 10000 times kmalloc(4096)/kfree -> 115 cycles 10000 times kmalloc(8192)/kfree -> 115 cycles 10000 times kmalloc(16384)/kfree -> 115 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 84 cycles 10000 times kmalloc(16) -> 88 cycles kfree -> 83 cycles 10000 times kmalloc(32) -> 90 cycles kfree -> 81 cycles 10000 times kmalloc(64) -> 107 cycles kfree -> 97 cycles 10000 times kmalloc(128) -> 134 cycles kfree -> 89 cycles 10000 times kmalloc(256) -> 145 cycles kfree -> 97 cycles 10000 times kmalloc(512) -> 177 cycles kfree -> 116 cycles 10000 times kmalloc(1024) -> 223 cycles kfree -> 151 cycles 10000 times kmalloc(2048) -> 1429 cycles kfree -> 221 cycles 10000 times kmalloc(4096) -> 720 cycles kfree -> 348 cycles 10000 times kmalloc(8192) -> 788 cycles kfree -> 393 cycles 10000 times kmalloc(16384) -> 867 cycles kfree -> 433 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 115 cycles 10000 times kmalloc(16)/kfree -> 115 cycles 10000 times kmalloc(32)/kfree -> 115 cycles 10000 times kmalloc(64)/kfree -> 120 cycles 10000 times kmalloc(128)/kfree -> 127 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 112 cycles 10000 times kmalloc(1024)/kfree -> 112 cycles 10000 times kmalloc(2048)/kfree -> 112 cycles 10000 times kmalloc(4096)/kfree -> 112 cycles 10000 times kmalloc(8192)/kfree -> 112 cycles 10000 times kmalloc(16384)/kfree -> 112 cycles Signed-off-by: Thomas Garnier <thgarnie@xxxxxxxxxx> --- Based on next-20160414 --- init/Kconfig | 9 ++++ mm/slab.c | 158 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 166 insertions(+), 1 deletion(-) diff --git a/init/Kconfig b/init/Kconfig index 0dfd09d..ee35418 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -1742,6 +1742,15 @@ config SLOB endchoice +config FREELIST_RANDOM + default n + depends on SLAB + bool "SLAB freelist randomization" + help + Randomizes the freelist order used on creating new SLABs. This + security feature reduces the predictability of the kernel slab + allocator against heap overflows. + config SLUB_CPU_PARTIAL default y depends on SLUB && SMP diff --git a/mm/slab.c b/mm/slab.c index b70aabf..5d8bde2 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -1229,6 +1229,61 @@ static void __init set_up_node(struct kmem_cache *cachep, int index) } } +#ifdef CONFIG_FREELIST_RANDOM +/* + * Master lists are pre-computed random lists + * Lists of different sizes are used to optimize performance on different + * SLAB object sizes per pages. + */ +static freelist_idx_t master_list_2[2]; +static freelist_idx_t master_list_4[4]; +static freelist_idx_t master_list_8[8]; +static freelist_idx_t master_list_16[16]; +static freelist_idx_t master_list_32[32]; +static freelist_idx_t master_list_64[64]; +static freelist_idx_t master_list_128[128]; +static freelist_idx_t master_list_256[256]; +static struct m_list { + size_t count; + freelist_idx_t *list; +} master_lists[] = { + { ARRAY_SIZE(master_list_2), master_list_2 }, + { ARRAY_SIZE(master_list_4), master_list_4 }, + { ARRAY_SIZE(master_list_8), master_list_8 }, + { ARRAY_SIZE(master_list_16), master_list_16 }, + { ARRAY_SIZE(master_list_32), master_list_32 }, + { ARRAY_SIZE(master_list_64), master_list_64 }, + { ARRAY_SIZE(master_list_128), master_list_128 }, + { ARRAY_SIZE(master_list_256), master_list_256 }, +}; + +static void __init freelist_random_init(void) +{ + unsigned int seed; + size_t z, i, rand; + struct rnd_state slab_rand; + + get_random_bytes_arch(&seed, sizeof(seed)); + prandom_seed_state(&slab_rand, seed); + + for (z = 0; z < ARRAY_SIZE(master_lists); z++) { + for (i = 0; i < master_lists[z].count; i++) + master_lists[z].list[i] = i; + + /* Fisher-Yates shuffle */ + for (i = master_lists[z].count - 1; i > 0; i--) { + rand = prandom_u32_state(&slab_rand); + rand %= (i + 1); + swap(master_lists[z].list[i], + master_lists[z].list[rand]); + } + } +} +#else +static inline void __init freelist_random_init(void) { } +#endif /* CONFIG_FREELIST_RANDOM */ + + /* * Initialisation. Called after the page allocator have been initialised and * before smp_init(). @@ -1255,6 +1310,8 @@ void __init kmem_cache_init(void) if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) slab_max_order = SLAB_MAX_ORDER_HI; + freelist_random_init(); + /* Bootstrap is tricky, because several objects are allocated * from caches that do not exist yet: * 1) initialize the kmem_cache cache: it contains the struct @@ -2442,6 +2499,101 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) #endif } +#ifdef CONFIG_FREELIST_RANDOM +enum master_type { + match, + less, + more +}; + +struct random_mng { + unsigned int padding; + unsigned int pos; + unsigned int count; + struct m_list master_list; + unsigned int master_count; + enum master_type type; +}; + +static void random_mng_initialize(struct random_mng *mng, unsigned int count) +{ + unsigned int idx; + const unsigned int last_idx = ARRAY_SIZE(master_lists) - 1; + + memset(mng, 0, sizeof(*mng)); + mng->count = count; + mng->pos = 0; + /* count is >= 2 */ + idx = ilog2(count) - 1; + if (idx >= last_idx) + idx = last_idx; + else if (roundup_pow_of_two(idx + 1) != count) + idx++; + mng->master_list = master_lists[idx]; + if (mng->master_list.count == mng->count) + mng->type = match; + else if (mng->master_list.count > mng->count) + mng->type = more; + else + mng->type = less; +} + +static freelist_idx_t get_next_entry(struct random_mng *mng) +{ + if (mng->type == less && mng->pos == mng->master_list.count) { + mng->padding += mng->pos; + mng->pos = 0; + } + BUG_ON(mng->pos >= mng->master_list.count); + return mng->master_list.list[mng->pos++]; +} + +static freelist_idx_t next_random_slot(struct random_mng *mng) +{ + freelist_idx_t cur, entry; + + entry = get_next_entry(mng); + + if (mng->type != match) { + while ((entry + mng->padding) >= mng->count) + entry = get_next_entry(mng); + cur = entry + mng->padding; + BUG_ON(cur >= mng->count); + } else { + cur = entry; + } + + return cur; +} + +static void shuffle_freelist(struct kmem_cache *cachep, struct page *page, + unsigned int count) +{ + unsigned int i; + struct random_mng mng; + + if (count < 2) { + for (i = 0; i < count; i++) + set_free_obj(page, i, i); + return; + } + + /* Last chunk is used already in this case */ + if (OBJFREELIST_SLAB(cachep)) + count--; + + random_mng_initialize(&mng, count); + for (i = 0; i < count; i++) + set_free_obj(page, i, next_random_slot(&mng)); + + if (OBJFREELIST_SLAB(cachep)) + set_free_obj(page, i, i); +} +#else +static inline void shuffle_freelist(struct kmem_cache *cachep, + struct page *page, unsigned int count) { } +#endif /* CONFIG_FREELIST_RANDOM */ + static void cache_init_objs(struct kmem_cache *cachep, struct page *page) { @@ -2464,8 +2616,12 @@ static void cache_init_objs(struct kmem_cache *cachep, kasan_poison_object_data(cachep, objp); } - set_free_obj(page, i, i); + /* If enabled, initialization is done in shuffle_freelist */ + if (!config_enabled(CONFIG_FREELIST_RANDOM)) + set_free_obj(page, i, i); } + + shuffle_freelist(cachep, page, cachep->num); } static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) -- 2.8.0.rc3.226.g39d4020 -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>