A kernel page fault oops with the callstack below was observed when a read syscall was made to a pmem device after a huge amount (>512GB) of vmalloc ranges was allocated by ioremap() on a x86_64 system. vmalloc_fault __do_page_fault do_page_fault page_fault pmem_rw_bytes [nd_pmem] btt_log_read [nd_btt] : SyS_finit_module entry_SYSCALL_64_fastpath Since 4.1, ioremap() supports large page (pud/pmd) mappings in x86_64 and PAE. vmalloc_fault() however assumes that the vmalloc range is limited to pte mappings. vmalloc faults do not normally happen in ioremap'd ranges since ioremap() sets up the kernel page tables, which are shared by user processes. pgd_ctor() sets the kernel's pgd entries to user's during fork(). When allocation of the vmalloc ranges crosses a 512GB boundary, ioremap() allocates a new pud table and updates the kernel pgd entry to point it. If user process's pgd entry does not have this update yet, a read/write syscall to the range will cause a vmalloc fault, which hits the Oops above as it does not handle a large page properly. Following changes are made to vmalloc_fault(). 64-bit: - No change for the pgd sync operation as it handles large pages already. - Add pud_huge() and pmd_huge() to the validation code to handle large pages. - Change pud_page_vaddr() to pud_pfn() since an ioremap range is not directly mapped (while the if-statement still works with a bogus addr). - Change pmd_page() to pmd_pfn() since an ioremap range is not backed by struct page (while the if-statement still works with a bogus addr). 32-bit: - No change for the sync operation since the index3 pgd entry covers the entire vmalloc range, which is always valid. (A separate change to sync pgd entry is necessary if this memory layout is changed regardless of the page size.) - Add pmd_huge() to the validation code to handle large pages. This is for completeness since vmalloc_fault() won't happen in ioremap'd ranges as its pgd entry is always valid. Reported-by: Henning Schild <henning.schild@xxxxxxxxxxx> Signed-off-by: Toshi Kani <toshi.kani@xxxxxxx> Cc: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Cc: Ingo Molnar <mingo@xxxxxxxxxx> Cc: "H. Peter Anvin" <hpa@xxxxxxxxx> Cc: Borislav Petkov <bp@xxxxxxxxx> Cc: <stable@xxxxxxxxxxxxxxx> # 4.1+ --- v3: Remove addresses from the callstack, and add cc to stable. v2: Add more descriptions about the issue in the change log. --- arch/x86/mm/fault.c | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index eef44d9..e830c71 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c @@ -287,6 +287,9 @@ static noinline int vmalloc_fault(unsigned long address) if (!pmd_k) return -1; + if (pmd_huge(*pmd_k)) + return 0; + pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; @@ -360,8 +363,6 @@ void vmalloc_sync_all(void) * 64-bit: * * Handle a fault on the vmalloc area - * - * This assumes no large pages in there. */ static noinline int vmalloc_fault(unsigned long address) { @@ -403,17 +404,23 @@ static noinline int vmalloc_fault(unsigned long address) if (pud_none(*pud_ref)) return -1; - if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) + if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref)) BUG(); + if (pud_huge(*pud)) + return 0; + pmd = pmd_offset(pud, address); pmd_ref = pmd_offset(pud_ref, address); if (pmd_none(*pmd_ref)) return -1; - if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) + if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref)) BUG(); + if (pmd_huge(*pmd)) + return 0; + pte_ref = pte_offset_kernel(pmd_ref, address); if (!pte_present(*pte_ref)) return -1; -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>