We move large part of fsl related code to hugetlbpage-book3e.c. Only code movement. This also avoid #ifdef in the code. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxxxxxxx> --- arch/powerpc/include/asm/hugetlb.h | 1 + arch/powerpc/mm/hugetlbpage-book3e.c | 293 +++++++++++++++++++++++++ arch/powerpc/mm/hugetlbpage-hash64.c | 121 +++++++++++ arch/powerpc/mm/hugetlbpage.c | 401 +---------------------------------- 4 files changed, 416 insertions(+), 400 deletions(-) diff --git a/arch/powerpc/include/asm/hugetlb.h b/arch/powerpc/include/asm/hugetlb.h index 7eac89b9f02e..0525f1c29afb 100644 --- a/arch/powerpc/include/asm/hugetlb.h +++ b/arch/powerpc/include/asm/hugetlb.h @@ -47,6 +47,7 @@ static inline unsigned int hugepd_shift(hugepd_t hpd) #endif /* CONFIG_PPC_BOOK3S_64 */ +#define hugepd_none(hpd) ((hpd).pd == 0) static inline pte_t *hugepte_offset(hugepd_t hpd, unsigned long addr, unsigned pdshift) diff --git a/arch/powerpc/mm/hugetlbpage-book3e.c b/arch/powerpc/mm/hugetlbpage-book3e.c index 7e6d0880813f..4c43a104e35c 100644 --- a/arch/powerpc/mm/hugetlbpage-book3e.c +++ b/arch/powerpc/mm/hugetlbpage-book3e.c @@ -7,6 +7,39 @@ */ #include <linux/mm.h> #include <linux/hugetlb.h> +#include <linux/bootmem.h> +#include <linux/moduleparam.h> +#include <linux/memblock.h> +#include <asm/tlb.h> +#include <asm/setup.h> + +/* + * Tracks gpages after the device tree is scanned and before the + * huge_boot_pages list is ready. On non-Freescale implementations, this is + * just used to track 16G pages and so is a single array. FSL-based + * implementations may have more than one gpage size, so we need multiple + * arrays + */ +#ifdef CONFIG_PPC_FSL_BOOK3E +#define MAX_NUMBER_GPAGES 128 +struct psize_gpages { + u64 gpage_list[MAX_NUMBER_GPAGES]; + unsigned int nr_gpages; +}; +static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; +#endif + +/* + * These macros define how to determine which level of the page table holds + * the hpdp. + */ +#ifdef CONFIG_PPC_FSL_BOOK3E +#define HUGEPD_PGD_SHIFT PGDIR_SHIFT +#define HUGEPD_PUD_SHIFT PUD_SHIFT +#else +#define HUGEPD_PGD_SHIFT PUD_SHIFT +#define HUGEPD_PUD_SHIFT PMD_SHIFT +#endif #ifdef CONFIG_PPC_FSL_BOOK3E #ifdef CONFIG_PPC64 @@ -197,3 +230,263 @@ void flush_hugetlb_page(struct vm_area_struct *vma, unsigned long vmaddr) __flush_tlb_page(vma->vm_mm, vmaddr, tsize, 0); } + +static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, + unsigned long address, unsigned pdshift, unsigned pshift) +{ + struct kmem_cache *cachep; + pte_t *new; + + int i; + int num_hugepd = 1 << (pshift - pdshift); + cachep = hugepte_cache; + + new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); + + BUG_ON(pshift > HUGEPD_SHIFT_MASK); + BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); + + if (! new) + return -ENOMEM; + + spin_lock(&mm->page_table_lock); + /* + * We have multiple higher-level entries that point to the same + * actual pte location. Fill in each as we go and backtrack on error. + * We need all of these so the DTLB pgtable walk code can find the + * right higher-level entry without knowing if it's a hugepage or not. + */ + for (i = 0; i < num_hugepd; i++, hpdp++) { + if (unlikely(!hugepd_none(*hpdp))) + break; + else + /* We use the old format for PPC_FSL_BOOK3E */ + hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; + } + /* If we bailed from the for loop early, an error occurred, clean up */ + if (i < num_hugepd) { + for (i = i - 1 ; i >= 0; i--, hpdp--) + hpdp->pd = 0; + kmem_cache_free(cachep, new); + } + spin_unlock(&mm->page_table_lock); + return 0; +} + +pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) +{ + pgd_t *pg; + pud_t *pu; + pmd_t *pm; + hugepd_t *hpdp = NULL; + unsigned pshift = __ffs(sz); + unsigned pdshift = PGDIR_SHIFT; + + addr &= ~(sz-1); + + pg = pgd_offset(mm, addr); + + if (pshift >= HUGEPD_PGD_SHIFT) { + hpdp = (hugepd_t *)pg; + } else { + pdshift = PUD_SHIFT; + pu = pud_alloc(mm, pg, addr); + if (pshift >= HUGEPD_PUD_SHIFT) { + hpdp = (hugepd_t *)pu; + } else { + pdshift = PMD_SHIFT; + pm = pmd_alloc(mm, pu, addr); + hpdp = (hugepd_t *)pm; + } + } + + if (!hpdp) + return NULL; + + BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); + + if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) + return NULL; + + return hugepte_offset(*hpdp, addr, pdshift); +} + +#ifdef CONFIG_PPC_FSL_BOOK3E +/* Build list of addresses of gigantic pages. This function is used in early + * boot before the buddy allocator is setup. + */ +void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) +{ + unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); + int i; + + if (addr == 0) + return; + + gpage_freearray[idx].nr_gpages = number_of_pages; + + for (i = 0; i < number_of_pages; i++) { + gpage_freearray[idx].gpage_list[i] = addr; + addr += page_size; + } +} + +/* + * Moves the gigantic page addresses from the temporary list to the + * huge_boot_pages list. + */ +int alloc_bootmem_huge_page(struct hstate *hstate) +{ + struct huge_bootmem_page *m; + int idx = shift_to_mmu_psize(huge_page_shift(hstate)); + int nr_gpages = gpage_freearray[idx].nr_gpages; + + if (nr_gpages == 0) + return 0; + +#ifdef CONFIG_HIGHMEM + /* + * If gpages can be in highmem we can't use the trick of storing the + * data structure in the page; allocate space for this + */ + m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0); + m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; +#else + m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); +#endif + + list_add(&m->list, &huge_boot_pages); + gpage_freearray[idx].nr_gpages = nr_gpages; + gpage_freearray[idx].gpage_list[nr_gpages] = 0; + m->hstate = hstate; + + return 1; +} +/* + * Scan the command line hugepagesz= options for gigantic pages; store those in + * a list that we use to allocate the memory once all options are parsed. + */ + +unsigned long gpage_npages[MMU_PAGE_COUNT]; + +static int __init do_gpage_early_setup(char *param, char *val, + const char *unused, void *arg) +{ + static phys_addr_t size; + unsigned long npages; + + /* + * The hugepagesz and hugepages cmdline options are interleaved. We + * use the size variable to keep track of whether or not this was done + * properly and skip over instances where it is incorrect. Other + * command-line parsing code will issue warnings, so we don't need to. + * + */ + if ((strcmp(param, "default_hugepagesz") == 0) || + (strcmp(param, "hugepagesz") == 0)) { + size = memparse(val, NULL); + } else if (strcmp(param, "hugepages") == 0) { + if (size != 0) { + if (sscanf(val, "%lu", &npages) <= 0) + npages = 0; + if (npages > MAX_NUMBER_GPAGES) { + pr_warn("MMU: %lu pages requested for page " + "size %llu KB, limiting to " + __stringify(MAX_NUMBER_GPAGES) "\n", + npages, size / 1024); + npages = MAX_NUMBER_GPAGES; + } + gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; + size = 0; + } + } + return 0; +} + + +/* + * This function allocates physical space for pages that are larger than the + * buddy allocator can handle. We want to allocate these in highmem because + * the amount of lowmem is limited. This means that this function MUST be + * called before lowmem_end_addr is set up in MMU_init() in order for the lmb + * allocate to grab highmem. + */ +void __init reserve_hugetlb_gpages(void) +{ + static __initdata char cmdline[COMMAND_LINE_SIZE]; + phys_addr_t size, base; + int i; + + strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); + parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, + NULL, &do_gpage_early_setup); + + /* + * Walk gpage list in reverse, allocating larger page sizes first. + * Skip over unsupported sizes, or sizes that have 0 gpages allocated. + * When we reach the point in the list where pages are no longer + * considered gpages, we're done. + */ + for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { + if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) + continue; + else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) + break; + + size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); + base = memblock_alloc_base(size * gpage_npages[i], size, + MEMBLOCK_ALLOC_ANYWHERE); + add_gpage(base, size, gpage_npages[i]); + } +} + +#define HUGEPD_FREELIST_SIZE \ + ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) + +struct hugepd_freelist { + struct rcu_head rcu; + unsigned int index; + void *ptes[0]; +}; + +static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); + +static void hugepd_free_rcu_callback(struct rcu_head *head) +{ + struct hugepd_freelist *batch = + container_of(head, struct hugepd_freelist, rcu); + unsigned int i; + + for (i = 0; i < batch->index; i++) + kmem_cache_free(hugepte_cache, batch->ptes[i]); + + free_page((unsigned long)batch); +} + +void hugepd_free(struct mmu_gather *tlb, void *hugepte) +{ + struct hugepd_freelist **batchp; + + batchp = this_cpu_ptr(&hugepd_freelist_cur); + + if (atomic_read(&tlb->mm->mm_users) < 2 || + cpumask_equal(mm_cpumask(tlb->mm), + cpumask_of(smp_processor_id()))) { + kmem_cache_free(hugepte_cache, hugepte); + put_cpu_var(hugepd_freelist_cur); + return; + } + + if (*batchp == NULL) { + *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); + (*batchp)->index = 0; + } + + (*batchp)->ptes[(*batchp)->index++] = hugepte; + if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { + call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); + *batchp = NULL; + } + put_cpu_var(hugepd_freelist_cur); +} +#endif diff --git a/arch/powerpc/mm/hugetlbpage-hash64.c b/arch/powerpc/mm/hugetlbpage-hash64.c index 9c224b012d62..9e457c83626b 100644 --- a/arch/powerpc/mm/hugetlbpage-hash64.c +++ b/arch/powerpc/mm/hugetlbpage-hash64.c @@ -14,6 +14,17 @@ #include <asm/cacheflush.h> #include <asm/machdep.h> +/* + * Tracks gpages after the device tree is scanned and before the + * huge_boot_pages list is ready. On non-Freescale implementations, this is + * just used to track 16G pages and so is a single array. FSL-based + * implementations may have more than one gpage size, so we need multiple + * arrays + */ +#define MAX_NUMBER_GPAGES 1024 +static u64 gpage_freearray[MAX_NUMBER_GPAGES]; +static unsigned nr_gpages; + extern long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa, unsigned long rlags, unsigned long vflags, int psize, int ssize); @@ -132,3 +143,113 @@ int hugepd_ok(hugepd_t hpd) return 0; } #endif + +static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, + unsigned long address, unsigned pdshift, unsigned pshift) +{ + struct kmem_cache *cachep; + pte_t *new; + + cachep = PGT_CACHE(pdshift - pshift); + + new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); + + BUG_ON(pshift > HUGEPD_SHIFT_MASK); + BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); + + if (! new) + return -ENOMEM; + + spin_lock(&mm->page_table_lock); + if (!hugepd_none(*hpdp)) + kmem_cache_free(cachep, new); + else { + hpdp->pd = (unsigned long)new | + (shift_to_mmu_psize(pshift) << 2); + } + spin_unlock(&mm->page_table_lock); + return 0; +} + +/* + * At this point we do the placement change only for BOOK3S 64. This would + * possibly work on other subarchs. + */ +pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) +{ + pgd_t *pg; + pud_t *pu; + pmd_t *pm; + hugepd_t *hpdp = NULL; + unsigned pshift = __ffs(sz); + unsigned pdshift = PGDIR_SHIFT; + + addr &= ~(sz-1); + pg = pgd_offset(mm, addr); + + if (pshift == PGDIR_SHIFT) + /* 16GB huge page */ + return (pte_t *) pg; + else if (pshift > PUD_SHIFT) + /* + * We need to use hugepd table + */ + hpdp = (hugepd_t *)pg; + else { + pdshift = PUD_SHIFT; + pu = pud_alloc(mm, pg, addr); + if (pshift == PUD_SHIFT) + return (pte_t *)pu; + else if (pshift > PMD_SHIFT) + hpdp = (hugepd_t *)pu; + else { + pdshift = PMD_SHIFT; + pm = pmd_alloc(mm, pu, addr); + if (pshift == PMD_SHIFT) + /* 16MB hugepage */ + return (pte_t *)pm; + else + hpdp = (hugepd_t *)pm; + } + } + if (!hpdp) + return NULL; + + BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); + + if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) + return NULL; + + return hugepte_offset(*hpdp, addr, pdshift); +} + + +/* Build list of addresses of gigantic pages. This function is used in early + * boot before the buddy allocator is setup. + */ +void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) +{ + if (!addr) + return; + while (number_of_pages > 0) { + gpage_freearray[nr_gpages] = addr; + nr_gpages++; + number_of_pages--; + addr += page_size; + } +} + +/* Moves the gigantic page addresses from the temporary list to the + * huge_boot_pages list. + */ +int alloc_bootmem_huge_page(struct hstate *hstate) +{ + struct huge_bootmem_page *m; + if (nr_gpages == 0) + return 0; + m = phys_to_virt(gpage_freearray[--nr_gpages]); + gpage_freearray[nr_gpages] = 0; + list_add(&m->list, &huge_boot_pages); + m->hstate = hstate; + return 1; +} diff --git a/arch/powerpc/mm/hugetlbpage.c b/arch/powerpc/mm/hugetlbpage.c index 744e24bcb85c..c94502899e94 100644 --- a/arch/powerpc/mm/hugetlbpage.c +++ b/arch/powerpc/mm/hugetlbpage.c @@ -31,413 +31,14 @@ unsigned int HPAGE_SHIFT; -/* - * Tracks gpages after the device tree is scanned and before the - * huge_boot_pages list is ready. On non-Freescale implementations, this is - * just used to track 16G pages and so is a single array. FSL-based - * implementations may have more than one gpage size, so we need multiple - * arrays - */ -#ifdef CONFIG_PPC_FSL_BOOK3E -#define MAX_NUMBER_GPAGES 128 -struct psize_gpages { - u64 gpage_list[MAX_NUMBER_GPAGES]; - unsigned int nr_gpages; -}; -static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; -#else -#define MAX_NUMBER_GPAGES 1024 -static u64 gpage_freearray[MAX_NUMBER_GPAGES]; -static unsigned nr_gpages; -#endif - -#define hugepd_none(hpd) ((hpd).pd == 0) - pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { /* Only called for hugetlbfs pages, hence can ignore THP */ return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL); } -static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, - unsigned long address, unsigned pdshift, unsigned pshift) -{ - struct kmem_cache *cachep; - pte_t *new; - -#ifdef CONFIG_PPC_FSL_BOOK3E - int i; - int num_hugepd = 1 << (pshift - pdshift); - cachep = hugepte_cache; -#else - cachep = PGT_CACHE(pdshift - pshift); -#endif - - new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); - - BUG_ON(pshift > HUGEPD_SHIFT_MASK); - BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); - - if (! new) - return -ENOMEM; - - spin_lock(&mm->page_table_lock); -#ifdef CONFIG_PPC_FSL_BOOK3E - /* - * We have multiple higher-level entries that point to the same - * actual pte location. Fill in each as we go and backtrack on error. - * We need all of these so the DTLB pgtable walk code can find the - * right higher-level entry without knowing if it's a hugepage or not. - */ - for (i = 0; i < num_hugepd; i++, hpdp++) { - if (unlikely(!hugepd_none(*hpdp))) - break; - else - /* We use the old format for PPC_FSL_BOOK3E */ - hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; - } - /* If we bailed from the for loop early, an error occurred, clean up */ - if (i < num_hugepd) { - for (i = i - 1 ; i >= 0; i--, hpdp--) - hpdp->pd = 0; - kmem_cache_free(cachep, new); - } -#else - if (!hugepd_none(*hpdp)) - kmem_cache_free(cachep, new); - else { -#ifdef CONFIG_PPC_BOOK3S_64 - hpdp->pd = (unsigned long)new | - (shift_to_mmu_psize(pshift) << 2); -#else - hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; -#endif - } -#endif - spin_unlock(&mm->page_table_lock); - return 0; -} - -/* - * These macros define how to determine which level of the page table holds - * the hpdp. - */ -#ifdef CONFIG_PPC_FSL_BOOK3E -#define HUGEPD_PGD_SHIFT PGDIR_SHIFT -#define HUGEPD_PUD_SHIFT PUD_SHIFT -#else -#define HUGEPD_PGD_SHIFT PUD_SHIFT -#define HUGEPD_PUD_SHIFT PMD_SHIFT -#endif - -#ifdef CONFIG_PPC_BOOK3S_64 -/* - * At this point we do the placement change only for BOOK3S 64. This would - * possibly work on other subarchs. - */ -pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) -{ - pgd_t *pg; - pud_t *pu; - pmd_t *pm; - hugepd_t *hpdp = NULL; - unsigned pshift = __ffs(sz); - unsigned pdshift = PGDIR_SHIFT; - - addr &= ~(sz-1); - pg = pgd_offset(mm, addr); - - if (pshift == PGDIR_SHIFT) - /* 16GB huge page */ - return (pte_t *) pg; - else if (pshift > PUD_SHIFT) - /* - * We need to use hugepd table - */ - hpdp = (hugepd_t *)pg; - else { - pdshift = PUD_SHIFT; - pu = pud_alloc(mm, pg, addr); - if (pshift == PUD_SHIFT) - return (pte_t *)pu; - else if (pshift > PMD_SHIFT) - hpdp = (hugepd_t *)pu; - else { - pdshift = PMD_SHIFT; - pm = pmd_alloc(mm, pu, addr); - if (pshift == PMD_SHIFT) - /* 16MB hugepage */ - return (pte_t *)pm; - else - hpdp = (hugepd_t *)pm; - } - } - if (!hpdp) - return NULL; - - BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); - - if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) - return NULL; - - return hugepte_offset(*hpdp, addr, pdshift); -} - -#else - -pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) -{ - pgd_t *pg; - pud_t *pu; - pmd_t *pm; - hugepd_t *hpdp = NULL; - unsigned pshift = __ffs(sz); - unsigned pdshift = PGDIR_SHIFT; - - addr &= ~(sz-1); - - pg = pgd_offset(mm, addr); - - if (pshift >= HUGEPD_PGD_SHIFT) { - hpdp = (hugepd_t *)pg; - } else { - pdshift = PUD_SHIFT; - pu = pud_alloc(mm, pg, addr); - if (pshift >= HUGEPD_PUD_SHIFT) { - hpdp = (hugepd_t *)pu; - } else { - pdshift = PMD_SHIFT; - pm = pmd_alloc(mm, pu, addr); - hpdp = (hugepd_t *)pm; - } - } - - if (!hpdp) - return NULL; - - BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); - - if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) - return NULL; - - return hugepte_offset(*hpdp, addr, pdshift); -} -#endif - -#ifdef CONFIG_PPC_FSL_BOOK3E -/* Build list of addresses of gigantic pages. This function is used in early - * boot before the buddy allocator is setup. - */ -void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) -{ - unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); - int i; - - if (addr == 0) - return; - - gpage_freearray[idx].nr_gpages = number_of_pages; - - for (i = 0; i < number_of_pages; i++) { - gpage_freearray[idx].gpage_list[i] = addr; - addr += page_size; - } -} - -/* - * Moves the gigantic page addresses from the temporary list to the - * huge_boot_pages list. - */ -int alloc_bootmem_huge_page(struct hstate *hstate) -{ - struct huge_bootmem_page *m; - int idx = shift_to_mmu_psize(huge_page_shift(hstate)); - int nr_gpages = gpage_freearray[idx].nr_gpages; - - if (nr_gpages == 0) - return 0; - -#ifdef CONFIG_HIGHMEM - /* - * If gpages can be in highmem we can't use the trick of storing the - * data structure in the page; allocate space for this - */ - m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0); - m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; -#else - m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); -#endif - - list_add(&m->list, &huge_boot_pages); - gpage_freearray[idx].nr_gpages = nr_gpages; - gpage_freearray[idx].gpage_list[nr_gpages] = 0; - m->hstate = hstate; - - return 1; -} -/* - * Scan the command line hugepagesz= options for gigantic pages; store those in - * a list that we use to allocate the memory once all options are parsed. - */ - -unsigned long gpage_npages[MMU_PAGE_COUNT]; - -static int __init do_gpage_early_setup(char *param, char *val, - const char *unused, void *arg) -{ - static phys_addr_t size; - unsigned long npages; - - /* - * The hugepagesz and hugepages cmdline options are interleaved. We - * use the size variable to keep track of whether or not this was done - * properly and skip over instances where it is incorrect. Other - * command-line parsing code will issue warnings, so we don't need to. - * - */ - if ((strcmp(param, "default_hugepagesz") == 0) || - (strcmp(param, "hugepagesz") == 0)) { - size = memparse(val, NULL); - } else if (strcmp(param, "hugepages") == 0) { - if (size != 0) { - if (sscanf(val, "%lu", &npages) <= 0) - npages = 0; - if (npages > MAX_NUMBER_GPAGES) { - pr_warn("MMU: %lu pages requested for page " - "size %llu KB, limiting to " - __stringify(MAX_NUMBER_GPAGES) "\n", - npages, size / 1024); - npages = MAX_NUMBER_GPAGES; - } - gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; - size = 0; - } - } - return 0; -} - - -/* - * This function allocates physical space for pages that are larger than the - * buddy allocator can handle. We want to allocate these in highmem because - * the amount of lowmem is limited. This means that this function MUST be - * called before lowmem_end_addr is set up in MMU_init() in order for the lmb - * allocate to grab highmem. - */ -void __init reserve_hugetlb_gpages(void) -{ - static __initdata char cmdline[COMMAND_LINE_SIZE]; - phys_addr_t size, base; - int i; - - strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); - parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, - NULL, &do_gpage_early_setup); - - /* - * Walk gpage list in reverse, allocating larger page sizes first. - * Skip over unsupported sizes, or sizes that have 0 gpages allocated. - * When we reach the point in the list where pages are no longer - * considered gpages, we're done. - */ - for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { - if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) - continue; - else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) - break; - - size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); - base = memblock_alloc_base(size * gpage_npages[i], size, - MEMBLOCK_ALLOC_ANYWHERE); - add_gpage(base, size, gpage_npages[i]); - } -} - -#else /* !PPC_FSL_BOOK3E */ - -/* Build list of addresses of gigantic pages. This function is used in early - * boot before the buddy allocator is setup. - */ -void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) -{ - if (!addr) - return; - while (number_of_pages > 0) { - gpage_freearray[nr_gpages] = addr; - nr_gpages++; - number_of_pages--; - addr += page_size; - } -} - -/* Moves the gigantic page addresses from the temporary list to the - * huge_boot_pages list. - */ -int alloc_bootmem_huge_page(struct hstate *hstate) -{ - struct huge_bootmem_page *m; - if (nr_gpages == 0) - return 0; - m = phys_to_virt(gpage_freearray[--nr_gpages]); - gpage_freearray[nr_gpages] = 0; - list_add(&m->list, &huge_boot_pages); - m->hstate = hstate; - return 1; -} -#endif - -#ifdef CONFIG_PPC_FSL_BOOK3E -#define HUGEPD_FREELIST_SIZE \ - ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) - -struct hugepd_freelist { - struct rcu_head rcu; - unsigned int index; - void *ptes[0]; -}; - -static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); - -static void hugepd_free_rcu_callback(struct rcu_head *head) -{ - struct hugepd_freelist *batch = - container_of(head, struct hugepd_freelist, rcu); - unsigned int i; - - for (i = 0; i < batch->index; i++) - kmem_cache_free(hugepte_cache, batch->ptes[i]); - - free_page((unsigned long)batch); -} - -static void hugepd_free(struct mmu_gather *tlb, void *hugepte) -{ - struct hugepd_freelist **batchp; - - batchp = this_cpu_ptr(&hugepd_freelist_cur); - - if (atomic_read(&tlb->mm->mm_users) < 2 || - cpumask_equal(mm_cpumask(tlb->mm), - cpumask_of(smp_processor_id()))) { - kmem_cache_free(hugepte_cache, hugepte); - put_cpu_var(hugepd_freelist_cur); - return; - } - - if (*batchp == NULL) { - *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); - (*batchp)->index = 0; - } - - (*batchp)->ptes[(*batchp)->index++] = hugepte; - if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { - call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); - *batchp = NULL; - } - put_cpu_var(hugepd_freelist_cur); -} -#endif +extern void hugepd_free(struct mmu_gather *tlb, void *hugepte); static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, unsigned long start, unsigned long end, unsigned long floor, unsigned long ceiling) -- 2.5.0 -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>