On Tue, 23 Mar 2010 12:25:45 +0000 Mel Gorman <mel@xxxxxxxxx> wrote: > Ordinarily when a high-order allocation fails, direct reclaim is entered to > free pages to satisfy the allocation. With this patch, it is determined if > an allocation failed due to external fragmentation instead of low memory > and if so, the calling process will compact until a suitable page is > freed. Compaction by moving pages in memory is considerably cheaper than > paging out to disk and works where there are locked pages or no swap. If > compaction fails to free a page of a suitable size, then reclaim will > still occur. > > Direct compaction returns as soon as possible. As each block is compacted, > it is checked if a suitable page has been freed and if so, it returns. > > > ... > > +static inline unsigned long compact_zone_order(struct zone *zone, > + int order, gfp_t gfp_mask) Suggest that you re-review all the manual inlining in the patchset. It's rarely needed and often incorrect. > +{ > + struct compact_control cc = { > + .nr_freepages = 0, > + .nr_migratepages = 0, > + .order = order, > + .migratetype = allocflags_to_migratetype(gfp_mask), > + .zone = zone, > + }; > + INIT_LIST_HEAD(&cc.freepages); > + INIT_LIST_HEAD(&cc.migratepages); > + > + return compact_zone(zone, &cc); > +} > + > +/** > + * try_to_compact_pages - Direct compact to satisfy a high-order allocation > + * @zonelist: The zonelist used for the current allocation > + * @order: The order of the current allocation > + * @gfp_mask: The GFP mask of the current allocation > + * @nodemask: The allowed nodes to allocate from > + * > + * This is the main entry point for direct page compaction. > + */ > +unsigned long try_to_compact_pages(struct zonelist *zonelist, > + int order, gfp_t gfp_mask, nodemask_t *nodemask) > +{ > + enum zone_type high_zoneidx = gfp_zone(gfp_mask); > + int may_enter_fs = gfp_mask & __GFP_FS; > + int may_perform_io = gfp_mask & __GFP_IO; > + unsigned long watermark; > + struct zoneref *z; > + struct zone *zone; > + int rc = COMPACT_INCOMPLETE; > + > + /* Check whether it is worth even starting compaction */ > + if (order == 0 || !may_enter_fs || !may_perform_io) > + return rc; hm, that was sad. All those darn wireless drivers doing their high-order GFP_ATOMIC allocations cannot be saved? > + /* > + * We will not stall if the necessary conditions are not met for > + * migration but direct reclaim seems to account stalls similarly > + */ > + count_vm_event(COMPACTSTALL); > + > + /* Compact each zone in the list */ > + for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, > + nodemask) { Will all of this code play nicely with memory hotplug? > + int fragindex; > + int status; > + > + /* > + * Watermarks for order-0 must be met for compaction. Note > + * the 2UL. This is because during migration, copies of > + * pages need to be allocated and for a short time, the > + * footprint is higher > + */ > + watermark = low_wmark_pages(zone) + (2UL << order); > + if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) > + continue; > + > + /* > + * fragmentation index determines if allocation failures are > + * due to low memory or external fragmentation > + * > + * index of -1 implies allocations might succeed depending > + * on watermarks > + * index < 500 implies alloc failure is due to lack of memory > + * > + * XXX: The choice of 500 is arbitrary. Reinvestigate > + * appropriately to determine a sensible default. > + * and what it means when watermarks are also taken > + * into account. Consider making it a sysctl > + */ Yes, best to make it a sysctl IMO. It'll make optimisation far easier. /proc/sys/vm/fragmentation_index_dont_you_dare_use_this_it_will_disappear_soon > + fragindex = fragmentation_index(zone, order); > + if (fragindex >= 0 && fragindex <= 500) > + continue; > + > + if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) { > + rc = COMPACT_PARTIAL; > + break; > + } > + > + status = compact_zone_order(zone, order, gfp_mask); > + rc = max(status, rc); > + > + if (zone_watermark_ok(zone, order, watermark, 0, 0)) > + break; > + } > + > + return rc; > +} > > ... > > @@ -1765,6 +1766,31 @@ __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, > > cond_resched(); > > + /* Try memory compaction for high-order allocations before reclaim */ > + if (order) { > + *did_some_progress = try_to_compact_pages(zonelist, > + order, gfp_mask, nodemask); > + if (*did_some_progress != COMPACT_INCOMPLETE) { > + page = get_page_from_freelist(gfp_mask, nodemask, > + order, zonelist, high_zoneidx, > + alloc_flags, preferred_zone, > + migratetype); > + if (page) { > + __count_vm_event(COMPACTSUCCESS); > + return page; > + } > + > + /* > + * It's bad if compaction run occurs and fails. > + * The most likely reason is that pages exist, > + * but not enough to satisfy watermarks. > + */ > + count_vm_event(COMPACTFAIL); This counter will get incremented if !__GFP_FS or !__GFP_IO. Seems wrong. > + cond_resched(); > + } > + } > + -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxxx For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>