
DEcoupled Fragmentation-Resistant Allocation Groups 
(DEFRAG)

AKA Page Allocator v2

ConfidentialPublic Domain



Goals

● Profitability
○ Break the zero-sum game
○ Shift the cost back to who incurs it

● Economic models
○ Overbooking
○ PAYG



The cost

● Physical contiguousness
○ Reduces h/w overhead, e.g., TLB misses
○ Reduces s/w overhead, e.g., metadata

● Mobility
○ Reversible v.s. irreversible fragmentation
○ A grouping policy favoring mobile allocations

● Reclaimability
○ To compact, or to reclaim, that is the question
○ A better frame of reference to answer that



Top and bottom halves

● Bottom half
○ Manages 2MB blocks
○ Treats contiguousness as a resource

● Top half
○ Manages base pages
○ Maintains API compatibility with the current page allocator

DEFRAG

Top half

Bottom 
half



Memcgs

● Blocks are charged to memcgs
○ In addition to page usage
○ Enforces fragmentation isolation

● Compaction becomes per memcg
○ Linked list based, not PFN based
○ Targets the culprit

● Migration between v1 memcgs
○ Requires page migration

Memcg 1

Top half

Bottom half

Memcg 2

Top half



VMs

● Can share a single pool of blocks
○ Communicate through hypercalls
○ Return free blocks to the host, hence PAYG
○ Blocks zeroed only by the host
○ No struct page [] in the host

Host top half

Guest bottom half

VM (host memcg 1)

VM memcg 1

Guest
top half

VM memcg 2

Guest
top half

Host bottom half

Memcg 2

Top half



Blocks

● Grouping policy
○ Differentiates “good/bad” allocations
○ E.g., mobile allocations use immobile blocks & immobile allocations pay for migration

● Runtime behavior awareness
○ Hotness (coldness) and lifetime
○ Coordination between compaction & reclaim



Metadata

● Per block metadata
○ Allocated at boot time
○ A fraction of the size of struct page []

■ Short term: ⅛ (similar to HVO)
■ Long term: 1% (breaks arithmetics on *page)

○ Sufficient for huge pages (THP and HugeTLB)
● Per page metadata

○ Allocated on split
○ Charged to the splitter
○ Freed when the block becomes empty



State of the art

● Hardware acceleration and fault tolerance
○ DMA zeroing
○ Hwpoison

● Physical address space engineering
○ PGHO interoperable
○ NUMA/tiering aware

● Separation of mechanism and policy
○ BPF interoperable
○ Rowhammer/cache coloring aware


