
Memory Overcommit in Containerized Environments

T.J. Alumbaugh (talumbau@google.com)

Yuanchu Xie (yuanchu@google.com)

LSF/MM/BPF 2023

mailto:yuanchu@google.com

Goal: Optimize memory in overcommitted
containerized environments
Containers could be virtual machines, K8s containers, applications with
memcgs

Clients Use Cases

• Virtualized OS on desktops/tablets for device flexibility
• Isolated execution environments for security

Datacenter servers

• SLO for different availability tiers
• Proactive reclaim
• Demotion/promotion between tiers

● Working set is a binning of pages, by time, or just
coldness.

● We collect WS in the guest/memcg hierarchy
for a better estimate of memory utilization inside
containers

● Generated on-demand from reclaim activity
● We use the balloon device send WS to the host,

which enables the host to make balloon size
decisions for each guest

Working Set as a Histogram

Page
counts

Idle age intervals

Hottest bin Coldest bin

VM 1 VM 2

Host

Ballooning
controller

Datacenter Use Case Client Use Case

MEMCG 1

Getting WS Reports from VMs: WS Reporting

Working Set report notification

• Clients subscribe by providing intervals
and a WS “receiver” object

• During background reclaim (or on
demand) the kernel generates the report
and publishes to the receiver (i.e. the
balloon driver)

• The driver reports the Working Set
histogram to the VMM via a virtqueue

Host controller responsibilities

A host controller receives signals and gives control
inputs to the system:

• Receives (and/or queries for) Working Set reports
• Must implement a policy for memory

adjustments.
• Has some notion of fairness, even if it is implicit.
• Sets memcg limits/balloon size as needed to

maintain SLAs
• Can use historical data (past executions, changes

in working set, etc) to guide its policy decisions

VM
1

VM 2

Host

Ballooning
controller

MEMCG 1

Code + Additional Resources

• Kernel patch + Balloon Driver patch RFC: linux-mm@

• Balloon Device:
- QEMU implementation RFC: qemu-devel@
- Crosvm implementation: github.com/google/crosvm

• VIRTIO Spec Additions: See virtio-comment@, virtio-dev@

