
GoogleGoogle

Reducing Zombie Memcgs

LSF/MM/BPF 2023

T.J. Mercier (tjmercier@google.com)
Yosry Ahmed (yosryahmed@google.com)

Chris Li (chriscli@google.com)

mailto:tjmercier@google.com
mailto:yosryahmed@google.com
mailto:chriscli@google.com


Google

Memcg A with Anonymous Memory 

Memcg A

Anonymous memory A

charged



Google

Memcg A Allocates Shared Memory S

Memcg A

Anonymous memory A

Shared memory S

charged

charged



Google

Memcgs A and B Share Memory S

Memcg A

Anonymous memory A

Memcg B

Anonymous memory B

Shared memory S

charged

charged

charged

used



Google

Memcg A Removed (Zombie)

Memcg A Memcg B

Anonymous memory B

Shared memory S

charged used

charged



Google

The Problem

● Zombie cgroups can accumulate.

● A lot. (thousands)

● This consumes kernel memory (per-cpu in struct mem_cgroup), and makes 
kernel operations (e.g. reclaim) less efficient.



Google

Non-Fixes for The Problem

● Manual reclaim (memory.reclaim)
○ Doesn’t work for unreclaimable memory (any shared/pinned memory that’s still in 

use).
○ Can result in swapped pages, which still keeps the cgroup around.
○ Can only attempt once before rmdir, and that can fail to reclaim everything.

● Reparent during offlining (move the charge up to the parent)
○ The parent also has no actual ownership of the memory.
○ Hides/mixes zombie memory with parent’s.
○ Affects pgscan/pgsteal for the new parent.
○ Can happen multiple times until the root cgroup gets stuck with it.
○ Non-deterministic memory use (same job, different memory use).



Google

Shared Resources (The Fundamental Problem)

● Pages have a single owning memcg (stored directly or indirectly in 
memcg_data).

● If a page is shared between cgroups for any reason, the charge can outlive 
the owning cgroup (Keeping the zombie alive undead).

● For pages that are not shared, reclaim should eventually clean up zombies
(but it would be nice to accelerate this).



Google

Maybe-Fixes for The Problem

● Short Term
○ Recharge during offlining (move the charge to some other cgroup).

■ Which other cgroup?

● Long Term
○ Add first class support for tracking shared memory resources.



Google

Short Term? Memory Recharging

● When a memcg is offlined, recharge pages charged to it to other memcgs.

● What types of pages do we have?
○ Kernel pages → already being reparented.

○ Mapped LRU pages.

○ Unmapped LRU pages.

■ Page cache pages.

■ Anonymous pages in the swap cache (ignore for now 1).

○ Anything else?



Google

Short Term? Memory Recharging

● What toolkit do we have?

○ Evict pages
■ Simple, but aggressive. [Un|Re]charges for file-backed pages. Reparents 

swap-backed pages. Doesn’t help for pinned pages. 
○ Direct recharge to a mapper

■ Memory recharged to the rightful owner – but can be disruptive 
(nondeterministic charges, potential OOM kills).

○ Deferred recharge (Two-step recharge)
■ Recharge to the parent, then to the rightful owner on next access or mapping.
■ Complicated, additional work in data access path.



Google

Short Term? Memory Recharging

● Proposed Workflow → async LRU walk for offlined memcg:

○ If the page is unmapped
■ If the page is file-backed

● Evict
■ If the page is swap-backed

● Deferred recharge to the next accessor (?)
○ If the page is mapped

● Recharge to a mapper (direct or deferred*)

● What about already swapped memory?

○ Idea: periodically walk swap_cgroups and reparent those charged to offline 
memcgs*



Google

Long Term: Properly Track the Shared Relationship
○ Shared Memory Controller (Chris Li)

■ Shared memory owned by the smemcg

■ The shared resource lifecycle is not tied to the lifecycle of any one memory 
cgroup

■ Track the shared resource usage separately with borrow counter.

■ No charge movement

■ No zombie memcg if all shared resource account in smemcg



Google

Memcgs A and B Share Memory S (set membership)

Memcg A

counter_list A.memory 

Anonymous memory A Tmpfs share memory S

Memcg B

counter_list B.memory

Anonymous memory B

page_counter A.charge page_counter B.charge

page_counter S.charge

Smemcg S



Google

Memcgs A and B Share Memory S (charge tracking)

Memcg A

counter_list A.memory 

Anonymous memory A Tmpfs share memory S

Memcg B

counter_list B.memory

Anonymous memory B

page_counter A.charge page_counter B.charge

page_counter S.charge

Smemcg S

page_counter
<S,A>.borrow 

page_counter
<S,B>.borrow 



Google

Discussion


