
TAO: THP Allocator Optimizations

Yu Zhao <yuzhao@google.com>



Fun facts

● Some CPU vendor is planning to remove 4KB page size support in the next 
decade.

● macOS on Apple silicon uses 16KB base page size.
● Windows on IA-64 used 8KB base page size.

At Google:

● Our POWER9 servers used 64KB base page size.
● We are experimenting with 16KB base page size on Android.

https://cloud.google.com/blog/products/gcp/introducing-zaius-google-and-rackspaces-open-server-running-ibm-power9
https://source.android.com/docs/core/architecture/16kb-page-size/16kb


Proposition

4KB page size is suboptimal for modern userspace:

● Some archs, e.g., x86_64, doesn’t support other base 
page sizes.

● Switching to a larger base page size, e.g., on arm64., 
breaks ABI.

A forward-looking OS would offer the opportunity to favor 
larger logical pages over 4KB base pages:

● Such an OS would be able to treat 4KB page size as 
legacy, but

● It would not require larger base page size support from 
h/w or break ABI.

Image source: https://en.wikipedia.org/wiki/I386



Rationale

Favoring THPs over 4KB pages brings:

● Better overall performance, and
● Less metadata overhead by, e.g., HVO or memdesc.

4KB page allocations are fairly penalized because:

● They are the source of fragmentation, and
● Defragmentation comes with a price, e.g., reclaim and/or compaction.

Fragmentation can become irreversible unless it’s contained.



A different economy

The aforementioned proposition is the cornerstone of TAO, i.e., it explores the 
opposite of the existing economy:

Existing TAO

Allocation
4KB page Relatively cheap Relatively expensive

THP Relatively expensive Relatively cheap

Conversion
THP -> 4KB pages Relatively cheap Relatively expensive

4KB pages -> THP Relatively expensive Relatively cheap



Fungibility

Fungibility makes the conversion between 4KB pages and THPs flexible. Rather 
than biases against THPs, TAO biases against 4KB pages.

Recovering is mainly designed for 1GB THPs, since copying 1GB data is obviously 
unaffordable for many potential use cases.

4KB pages -> THP THP -> 4KB pages

In place (when possible) Recover (TAO) Split (existing)

Out of place (when possible) Collapse (existing) Shatter (TAO)



Allocation-time hints

__GFP_MOVABLE is stronger than __GFP_COMP because the former can make 
the latter possible (by compaction) but not the vice versa.

Ideal fallback order:

A. Movable compound (weight = 3, i.e., most desirable)
B. Movable
C. Unmovable compound
D. Unmovable (weight = 0, i.e., least desirable)

Order 0 Compound (weight = 1)

Movable (weight = 2) 2 1 + 2 = 3

Unmovable 0 1



Runtime hints

Lifetimes of unmovable allocations can be statistically estimated by sampling, e.g.,

● Sample an allocation site by recording PFN and timestamp.
● Calculate the lifetime of the sample when freeing the page.
● Group unmovable allocations by their estimated lifetimes.

This is another ongoing research project (Tetris) at Google.



Interoperability with userspace

Fragmentation is only observable (or measured) systemwide:

● A low priority task can make a high priority task suffer.
● Per-memcg observability (or ideally limit) would be very helpful.

THP fungibility needs to be a cooperation between the userspace and kernel:

● To account for additional runtime behaviors like hotness and lifetime of 
allocations by, e.g., Profile-Guided Heap Optimization (PGHO).

● To better utilize physical contiguity in a system, e.g., making 1GB THPs possible 
by additional madvise() flags.



Memory partitioning

Containing (by hardwalling) 4KB pages and THPs in 
two separate partitions can:

● Provide guaranteed THP coverage, and
● Apply differential pressure, i.e., higher pressure to 

the 4KB page partition.

Image source: https://en.wikipedia.org/wiki/High-occupancy_vehicle_lane

Memory utilization System throughput

Mix (existing) High Low

Separate (TAO) Low High



Sizing and resizing

The sizes of the 4KB page and THP partitions can be based on:

● Global min/max (new knobs) of the THP partition, and
● Per-memcg min/max (new knobs) of the allotted THP partition.

The per-memcg min/max prevent priority inversion, i.e., a low priority task 
consuming more THPs than a high priority task.

Resizing relies on hot removal/plug:

● Shrinking the THP partition (enlarging the 4KB page partition) is theoretically 
guaranteed.

● The opposite direction is best effort, but still likely to succeed (by Tetris).



Auto resizing and OOM kills

Auto resizing can be done based on memory pressure from respective partitions:

● Differential pressure is required to counteract fragmentation.
● Memory pressure in the 4KB page partition can optionally invoke the OOM 

killer even if the THP partition experiences no pressure.

For some major platforms, (userspace-managed) OOM kills are not only affordable; 
oftentimes, they are preferred:

● Android LMKs of background apps.
● ChromeOS tab discard of background tabs.
● In Cloud (containerized), realtime jobs preempting batch jobs.



Preliminary results

Android (OPPO)

ChromeOS (Google)

4KB 32KB 32KB + TAO=30%

Tab switch time (ms) 111 105 (baseline) 95 (-10%)



Development history

● First attempted to reduce systemwide fragmentation – bunch of random hacks.
● Then attempted to isolate fragmentation between memcg – DEFRAG.
● Arrived at the aforementioned proposition – TAO.
● Still doing the research on estimating lifetimes of unmovable allocations – 

Tetris.



Related works

1. CMU/Meta’s zone-based Contiguitas.
2. OPPO’s pageblock-based 64KB large folio pool + dual LRU.
3. Google’s pageblock-based DEFRAG (DEcoupled Fragmentation-Resistant 

Allocation Groups) – basically a rewrite of the page allocator.
4. Google’s Tetris (estimate lifetimes of unmovable allocations) – a research 

project.

https://dl.acm.org/doi/pdf/10.1145/3579371.3589079
https://marc.info/?l=linux-mm&m=171574079927297
https://lore.kernel.org/CAOUHufbGLAQaZQns+KJRvX5e0OL0J51BSdQgZr8fOfc5sZ1PKw@mail.gmail.com/

