From: Kelvin Cheung <keguang.zhang@xxxxxxxxx> This patch adds NAND driver for Loongson1B. Signed-off-by: Kelvin Cheung <keguang.zhang@xxxxxxxxx> --- V4 -> V5: Update the driver to fit the raw NAND framework. Implement exec_op() instead of legacy cmdfunc(). Use dma_request_chan() instead of dma_request_channel(). Some minor fixes and cleanups. V3 -> V4: Retrieve the controller from nand_hw_control. V2 -> V3: Replace __raw_readl/__raw_writel with readl/writel. Split ls1x_nand into two structures: ls1x_nand_chip and ls1x_nand_controller. V1 -> V2: Modify the dependency in Kconfig due to the changes of DMA module. --- drivers/mtd/nand/raw/Kconfig | 8 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/loongson1_nand.c | 770 ++++++++++++++++++++++++++ 3 files changed, 779 insertions(+) create mode 100644 drivers/mtd/nand/raw/loongson1_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 30f061939560..63402e335df4 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -453,6 +453,14 @@ config MTD_NAND_ROCKCHIP NFC v800: RK3308, RV1108 NFC v900: PX30, RK3326 +config MTD_NAND_LOONGSON1 + tristate "Support for Loongson1 SoC NAND controller" + depends on MACH_LOONGSON32 + select MTD_NAND_ECC_SW_HAMMING + select LOONGSON1_DMA + help + Enables support for NAND controller on Loongson1 SoCs. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index d011c6c53f8f..50a51ad6ec21 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o +obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/loongson1_nand.c b/drivers/mtd/nand/raw/loongson1_nand.c new file mode 100644 index 000000000000..b06e36ec32da --- /dev/null +++ b/drivers/mtd/nand/raw/loongson1_nand.c @@ -0,0 +1,770 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NAND Flash Driver for Loongson 1 SoC + * + * Copyright (C) 2015-2021 Zhang, Keguang <keguang.zhang@xxxxxxxxx> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/clk.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/iopoll.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/platform_device.h> +#include <linux/sizes.h> + +#include <nand.h> + +/* Loongson 1 NAND Register Definitions */ +#define NAND_CMD 0x0 +#define NAND_ADDR1 0x4 +#define NAND_ADDR2 0x8 +#define NAND_TIMING 0xc +#define NAND_IDL 0x10 +#define NAND_IDH 0x14 +#define NAND_STATUS 0x15 +#define NAND_PARAM 0x18 +#define NAND_OP_NUM 0x1c +#define NAND_CS_RDY 0x20 + +#define NAND_DMA_ADDR 0x40 + +/* NAND Command Register Bits */ +#define OP_DONE BIT(10) +#define OP_SPARE BIT(9) +#define OP_MAIN BIT(8) +#define CMD_STATUS BIT(7) +#define CMD_RESET BIT(6) +#define CMD_READID BIT(5) +#define BLOCKS_ERASE BIT(4) +#define CMD_ERASE BIT(3) +#define CMD_WRITE BIT(2) +#define CMD_READ BIT(1) +#define CMD_VALID BIT(0) + +#define MAX_ADDR_CYC 5U +#define MAX_ID_SIZE (NAND_STATUS - NAND_IDL) +#define SIZE_MASK GENMASK(11, 8) + +#define BITS_PER_WORD 32 + +/* macros for registers read/write */ +#define nand_readl(nc, off) \ + readl((nc)->reg_base + (off)) + +#define nand_writel(nc, off, val) \ + writel((val), (nc)->reg_base + (off)) + +struct ls1x_nand_controller { + void __iomem *reg_base; + __le32 addr1_reg; + __le32 addr2_reg; + + char *buf; + unsigned int len; + unsigned int rdy_timeout; + + /* DMA Engine stuff */ + struct dma_chan *dma_chan; + dma_cookie_t dma_cookie; + struct completion dma_complete; +}; + +struct ls1x_nand { + struct device *dev; + struct clk *clk; + struct nand_chip chip; + struct nand_controller controller; + struct ls1x_nand_controller nc; + struct plat_ls1x_nand *pdata; +}; + +static void ls1x_nand_dump_regs(struct nand_chip *chip) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + + print_hex_dump(KERN_INFO, "REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nc->reg_base, 0x44, false); +} + +static void ls1x_nand_dma_callback(void *data) +{ + struct ls1x_nand *nand = (struct ls1x_nand *)data; + struct ls1x_nand_controller *nc = &nand->nc; + enum dma_status status; + + status = dmaengine_tx_status(nc->dma_chan, nc->dma_cookie, NULL); + if (likely(status == DMA_COMPLETE)) + dev_dbg(nand->dev, "DMA complete with cookie=%d\n", + nc->dma_cookie); + else + dev_err(nand->dev, "DMA error with cookie=%d\n", + nc->dma_cookie); + + complete(&nc->dma_complete); +} + +static int ls1x_nand_dma_transfer(struct ls1x_nand *nand, bool is_write) +{ + struct ls1x_nand_controller *nc = &nand->nc; + struct dma_chan *chan = nc->dma_chan; + struct dma_async_tx_descriptor *desc; + enum dma_data_direction data_dir = + is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + enum dma_transfer_direction xfer_dir = + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; + dma_addr_t dma_addr; + int ret; + + dma_addr = dma_map_single(chan->device->dev, nc->buf, nc->len, + data_dir); + if (dma_mapping_error(chan->device->dev, dma_addr)) { + dev_err(nand->dev, "failed to map DMA buffer!\n"); + return -ENXIO; + } + + desc = dmaengine_prep_slave_single(chan, dma_addr, nc->len, xfer_dir, + DMA_PREP_INTERRUPT); + if (!desc) { + dev_err(nand->dev, "failed to prepare DMA descriptor!\n"); + ret = PTR_ERR(desc); + goto err; + } + desc->callback = ls1x_nand_dma_callback; + desc->callback_param = nand; + + nc->dma_cookie = dmaengine_submit(desc); + ret = dma_submit_error(nc->dma_cookie); + if (ret) { + dev_err(nand->dev, "failed to submit DMA descriptor!\n"); + goto err; + } + + dev_dbg(nand->dev, "issue DMA with cookie=%d\n", nc->dma_cookie); + dma_async_issue_pending(chan); + + ret = wait_for_completion_timeout(&nc->dma_complete, + msecs_to_jiffies(nc->rdy_timeout)); + if (ret <= 0) { + dev_err(nand->dev, "DMA timeout!\n"); + dmaengine_terminate_all(chan); + ret = -EIO; + } + ret = 0; +err: + dma_unmap_single(chan->device->dev, dma_addr, nc->len, data_dir); + + return ret; +} + +static inline void ls1x_nand_parse_address(struct nand_chip *chip, + const u8 *addrs, + unsigned int naddrs, int cmd) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; +#if defined(CONFIG_LOONGSON1_LS1B) + unsigned int page_shift = chip->page_shift + 1; +#endif + int i; + + nc->addr1_reg = 0; + nc->addr2_reg = 0; +#if defined(CONFIG_LOONGSON1_LS1B) + if (cmd == CMD_ERASE) { + page_shift = chip->page_shift; + + for (i = 0; i < min(MAX_ADDR_CYC - 2, naddrs); i++) + nc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * i); + if (i == MAX_ADDR_CYC - 2) + nc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); + + return; + } + + for (i = 0; i < min(2U, naddrs); i++) + nc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + for (i = 2; i < min(MAX_ADDR_CYC, naddrs); i++) + nc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * (i - 2)); + if (i == MAX_ADDR_CYC) + nc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); +#elif defined(CONFIG_LOONGSON1_LS1C) + if (cmd == CMD_ERASE) { + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) + nc->addr2_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + + return; + } + + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) { + if (i < 2) + nc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + else + nc->addr2_reg |= + (u32)addrs[i] << BITS_PER_BYTE * (i - 2); + } +#endif +} + +static int ls1x_nand_set_controller(struct nand_chip *chip, + const struct nand_subop *subop, int cmd) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + unsigned int op_id; + + nc->buf = NULL; + nc->len = 0; + nc->rdy_timeout = 0; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + const struct nand_op_instr *instr = &subop->instrs[op_id]; + unsigned int offset, naddrs; + const u8 *addrs; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + break; + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + ls1x_nand_parse_address(chip, addrs, naddrs, cmd); + /* set NAND address */ + nand_writel(nc, NAND_ADDR1, nc->addr1_reg); + nand_writel(nc, NAND_ADDR2, nc->addr2_reg); + break; + case NAND_OP_DATA_IN_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + nc->len = nand_subop_get_data_len(subop, op_id); + nc->buf = instr->ctx.data.buf.in + offset; + + if (!IS_ALIGNED(nc->len, chip->buf_align) || + !IS_ALIGNED((unsigned int)nc->buf, chip->buf_align)) + return -ENOTSUPP; + /* set NAND data length */ + nand_writel(nc, NAND_OP_NUM, nc->len); + break; + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + nc->len = nand_subop_get_data_len(subop, op_id); + nc->buf = (void *)instr->ctx.data.buf.out + offset; + + if (!IS_ALIGNED(nc->len, chip->buf_align) || + !IS_ALIGNED((unsigned int)nc->buf, chip->buf_align)) + return -ENOTSUPP; + /* set NAND data length */ + nand_writel(nc, NAND_OP_NUM, nc->len); + break; + case NAND_OP_WAITRDY_INSTR: + nc->rdy_timeout = instr->ctx.waitrdy.timeout_ms; + break; + } + } + + /*set NAND erase block count */ + if (cmd & CMD_ERASE) + nand_writel(nc, NAND_OP_NUM, 1); + /*set NAND operation region */ + if (nc->buf && nc->len) { + if (nc->addr1_reg & BIT(chip->page_shift)) + cmd |= OP_SPARE; + else + cmd |= OP_SPARE | OP_MAIN; + } + + /*set NAND command */ + nand_writel(nc, NAND_CMD, cmd); + /* Trigger operation */ + nand_writel(nc, NAND_CMD, nand_readl(nc, NAND_CMD) | CMD_VALID); + + return 0; +} + +static inline int ls1x_nand_wait_for_op_done(struct ls1x_nand_controller *nc) +{ + unsigned int val; + int ret = 0; + + /* Wait for operation done */ + if (nc->rdy_timeout) + ret = readl_relaxed_poll_timeout(nc->reg_base + NAND_CMD, val, + val & OP_DONE, 0, + nc->rdy_timeout * 1000); + + return ret; +} + +static int ls1x_nand_reset_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_RESET); + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) + dev_err(nand->dev, "CMD_RESET failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_read_id_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int idl, i; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_READID); + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) { + dev_err(nand->dev, "CMD_READID failed! %d\n", ret); + return ret; + } + + idl = (nand_readl(nc, NAND_IDL)); + for (i = 0; i < min_t(unsigned int, nc->len, MAX_ID_SIZE); i++) + if (i > 0) + nc->buf[i] = *((char *)&idl + 4 - i); + else + nc->buf[i] = (char)(nand_readl(nc, NAND_IDH)); + + return ret; +} + +static int ls1x_nand_erase_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_ERASE); + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) + dev_err(nand->dev, "CMD_ERASE failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_read_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_READ); + + ret = ls1x_nand_dma_transfer(nand, false); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) + dev_err(nand->dev, "CMD_READ failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_write_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_WRITE); + + ret = ls1x_nand_dma_transfer(nand, true); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) + dev_err(nand->dev, "CMD_WRITE failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_STATUS); + + ret = ls1x_nand_wait_for_op_done(nc); + if (ret) { + dev_err(nand->dev, "CMD_STATUS failed! %d\n", ret); + return ret; + } + + nc->buf[0] = nand_readl(nc, NAND_IDH) >> BITS_PER_BYTE; + + return ret; +} + +static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + ls1x_nand_reset_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_id_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_erase_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_write_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + ); + +static int ls1x_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, + check_only); +} + +static int ls1x_nand_read_subpage(struct nand_chip *chip, + unsigned int data_offs, unsigned int readlen, + unsigned char *bufpoi, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int start_step, end_step, num_steps, ret; + char *p; + int data_col_addr, i; + int datafrag_len, eccfrag_len, aligned_len, aligned_pos; + int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; + int index, section = 0; + unsigned int max_bitflips = 0; + struct mtd_oob_region oobregion = { }; + + /* Read the whole page and OOB data */ + ret = chip->ecc.read_page_raw(chip, bufpoi, 1, page); + if (ret) + return ret; + + /* Column address within the page aligned to ECC size (256bytes) */ + start_step = data_offs / chip->ecc.size; + end_step = (data_offs + readlen - 1) / chip->ecc.size; + num_steps = end_step - start_step + 1; + index = start_step * chip->ecc.bytes; + + /* Data size aligned to ECC ecc.size */ + datafrag_len = num_steps * chip->ecc.size; + eccfrag_len = num_steps * chip->ecc.bytes; + + data_col_addr = start_step * chip->ecc.size; + /* If we read not a page aligned data */ + p = bufpoi + data_col_addr; + + /* Calculate ECC */ + for (i = 0; i < eccfrag_len; i += chip->ecc.bytes, p += chip->ecc.size) + chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); + + ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); + if (ret) + return ret; + + aligned_pos = oobregion.offset & ~(busw - 1); + aligned_len = eccfrag_len; + if (oobregion.offset & (busw - 1)) + aligned_len++; + if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & (busw - 1)) + aligned_len++; + + memcpy(&chip->oob_poi[aligned_pos], + bufpoi + mtd->writesize + aligned_pos, aligned_len); + + ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, + chip->oob_poi, index, eccfrag_len); + if (ret) + return ret; + + p = bufpoi + data_col_addr; + for (i = 0; i < eccfrag_len; i += chip->ecc.bytes, p += chip->ecc.size) { + int stat; + + stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], + &chip->ecc.calc_buf[i]); + if (stat) + ls1x_nand_dump_regs(chip); + + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, + &chip->ecc.code_buf[i], + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +static int ls1x_nand_attach_chip(struct nand_chip *chip) +{ + struct ls1x_nand *nand = nand_get_controller_data(chip); + struct ls1x_nand_controller *nc = &nand->nc; + struct plat_ls1x_nand *pdata = nand->pdata; + int hold_cycle = pdata->hold_cycle; + int wait_cycle = pdata->wait_cycle; + u64 chipsize = nanddev_target_size(&chip->base); + int cell_size = 0; + + switch (chipsize) { + case SZ_128M: + cell_size = 0x0; + break; + case SZ_256M: + cell_size = 0x1; + break; + case SZ_512M: + cell_size = 0x2; + break; + case SZ_1G: + cell_size = 0x3; + break; + case SZ_2G: + cell_size = 0x4; + break; + case SZ_4G: + cell_size = 0x5; + break; + case (SZ_2G * SZ_4G): /*8G */ + cell_size = 0x6; + break; + case (SZ_4G * SZ_4G): /*16G */ + cell_size = 0x7; + break; + default: + dev_err(nand->dev, "unsupported chip size: %llu MB\n", + chipsize); + break; + } + + if (hold_cycle && wait_cycle) + nand_writel(nc, NAND_TIMING, + (hold_cycle << BITS_PER_BYTE) | wait_cycle); + nand_writel(nc, NAND_PARAM, + (nand_readl(nc, NAND_PARAM) & ~SIZE_MASK) | cell_size << + BITS_PER_BYTE); + + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + + return 0; +} + +static const struct nand_controller_ops ls1x_nc_ops = { + .exec_op = ls1x_nand_exec_op, + .attach_chip = ls1x_nand_attach_chip, +}; + +static void ls1x_nand_controller_cleanup(struct ls1x_nand *nand) +{ + if (nand->nc.dma_chan) + dma_release_channel(nand->nc.dma_chan); +} + +static int ls1x_nand_controller_init(struct ls1x_nand *nand, + struct platform_device *pdev) +{ + struct ls1x_nand_controller *nc = &nand->nc; + struct device *dev = &pdev->dev; + struct dma_slave_config cfg; + struct resource *res; + int ret; + + nc->reg_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nc->reg_base)) + return PTR_ERR(nc->reg_base); + + res = platform_get_resource(pdev, IORESOURCE_DMA, 0); + if (!res) { + dev_err(dev, "failed to get DMA information!\n"); + return -ENXIO; + } + + nc->dma_chan = dma_request_chan(dev, res->name); + if (!nc->dma_chan) { + dev_err(dev, "failed to request DMA channel!\n"); + return -EBUSY; + } + dev_info(dev, "got %s for %s access\n", + dma_chan_name(nc->dma_chan), dev_name(dev)); + + cfg.src_addr = CPHYSADDR(nc->reg_base + NAND_DMA_ADDR); + cfg.dst_addr = CPHYSADDR(nc->reg_base + NAND_DMA_ADDR); + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + ret = dmaengine_slave_config(nc->dma_chan, &cfg); + if (ret) { + dev_err(dev, "failed to config DMA channel!\n"); + dma_release_channel(nc->dma_chan); + return ret; + } + + init_completion(&nc->dma_complete); + + return 0; +} + +static int ls1x_nand_chip_init(struct ls1x_nand *nand) +{ + struct nand_chip *chip = &nand->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct plat_ls1x_nand *pdata = nand->pdata; + int ret = 0; + + chip->controller = &nand->controller; + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD; + chip->buf_align = 16; + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + nand_set_controller_data(chip, nand); + + mtd->dev.parent = nand->dev; + mtd->name = "ls1x-nand"; + mtd->owner = THIS_MODULE; + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + chip->ecc.read_subpage = ls1x_nand_read_subpage; + + ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); + if (ret) { + dev_err(nand->dev, "failed to register MTD device! %d\n", ret); + nand_cleanup(chip); + } + + return ret; +} + +static int ls1x_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct plat_ls1x_nand *pdata; + struct ls1x_nand *nand; + int ret; + + pdata = dev_get_platdata(dev); + if (!pdata) { + dev_err(dev, "platform data missing!\n"); + return -EINVAL; + } + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->pdata = pdata; + nand->dev = dev; + nand->controller.ops = &ls1x_nc_ops; + nand_controller_init(&nand->controller); + + ret = ls1x_nand_controller_init(nand, pdev); + if (ret) + return ret; + + nand->clk = devm_clk_get(dev, pdev->name); + if (IS_ERR(nand->clk)) { + dev_err(dev, "failed to get %s clock!\n", pdev->name); + return PTR_ERR(nand->clk); + } + clk_prepare_enable(nand->clk); + + ret = ls1x_nand_chip_init(nand); + if (ret) { + clk_disable_unprepare(nand->clk); + goto err; + } + + platform_set_drvdata(pdev, nand); + dev_info(dev, "Loongson1 NAND driver registered\n"); + + return 0; +err: + ls1x_nand_controller_cleanup(nand); + return ret; +} + +static int ls1x_nand_remove(struct platform_device *pdev) +{ + struct ls1x_nand *nand = platform_get_drvdata(pdev); + struct nand_chip *chip = &nand->chip; + + mtd_device_unregister(nand_to_mtd(chip)); + nand_cleanup(chip); + clk_disable_unprepare(nand->clk); + ls1x_nand_controller_cleanup(nand); + + return 0; +} + +static struct platform_driver ls1x_nand_driver = { + .probe = ls1x_nand_probe, + .remove = ls1x_nand_remove, + .driver = { + .name = "ls1x-nand", + .owner = THIS_MODULE, + }, +}; + +module_platform_driver(ls1x_nand_driver); + +MODULE_AUTHOR("Kelvin Cheung <keguang.zhang@xxxxxxxxx>"); +MODULE_DESCRIPTION("Loongson1 NAND Flash driver"); +MODULE_LICENSE("GPL"); base-commit: fd0d8d85f7230052e638a56d1bfea170c488e6bc -- 2.30.2