On 03/05/11 12:59, Sébastien RAILLARD (COEXSI) wrote: > Dear all, > > I'm doing some tests with the CI interface of the "Linux4Media cineS2 DVB-S2 > Twin Tuner (v5)" card. > I notice some TS discontinuities during my tests. > > My setup: > - Aston Viaccess Pro CAM > - Linux4Media cineS2 DVB-S2 Twin Tuner (v5) card > - Latest git media_build source with DF_SWAP32 patch > - DVB-S source from ASTRA 19.2E / 12285.00-V-27500 > > Test #1: (idle) > Reading from sec0 (without CI init or sec0 input stream) using "dd" give me > a stream of NULL TS packets of roughly 62mbps or 7.8MB/s (seems normal > behavior) > Command line: dd if=/dev/dvb/adapter14/sec0 of=/root/test.ts bs=18800 > count=10000 > > Test #2: (CAM removal) > After CAM initialization and some tests, if CAM is removed, the output sec0 > bandwidth isn't anymore 62mbps of NULL TS packets > Same command line as Test #1 is used. > It seems that the CI is badly reacting after hot remove of CAM. > After rebooting, everything is fine again. > > Test #3: (Test dvr0 stream) > - Setting up the DVB-S reception: gnutv -adapter 14 -channels channels.conf > -out dvr CHAINE > - Channel configuration: CHAINE:12285:v:0:27500:170:120:17030 > - Dumping the dvr0 output: dd if=/dev/dvb/adapter14/dvr0 of=/root/test.ts > bs=1880 count=1000 > => The dvr0 output bandwidth is roughly 300kB/s (normal for one filtered > channel) > => The resulting TS file is correct (no sync missing, no continuity error) > > Test #4: (Loop mode - No CAM inserted) > - Sending all TS packets from dvr0 to sec0: dd if=/dev/dvb/adapter14/dvr0 > of=/dev/dvb/adapter14/sec0 bs=1880 > - Setting up the DVB-S reception: gnutv -adapter 14 -channels channels.conf > -out dvr CHAINE > - Channel configuration: CHAINE:12285:v:0:27500:170:120:17030 > - Dumping the sec0 output: dd if=/dev/dvb/adapter14/sec0 of=/root/test.ts > bs=18800 count=10000 > => The sec0 output bandwidth is roughly 7.8MB/s (normal as the CI output is > always 62mbps) > => The resulting TS file is filled at 96% by NULL TS packets (normal, > regarding the input stream bandwidth of 300kB/S) > => All the input PID seem to present in the output file > => But, there are some discontinuities in the TS packets (a lot and for all > the PID) > > Test #5: (Trough CAM - CAM is inserted) > - Sending all TS packets from dvr0 to sec0: dd if=/dev/dvb/adapter14/dvr0 > of=/dev/dvb/adapter14/sec0 bs=1880 > - Setting up the DVB-S reception: gnutv -adapter 14 -channels channels.conf > -out dvr CHAINE > - Channel configuration: CHAINE:12285:v:0:27500:170:120:17030 > - Waiting for CAM initialization (the CAM is correctly initialized and the > PMT packet is send to the CAM) > - Dumping the sec0 output: dd if=/dev/dvb/adapter14/sec0 of=/root/test.ts > bs=18800 count=10000 > => The sec0 output bandwidth is roughly 7.8MB/s (normal as the CI output is > always 62mbps) > => The resulting TS file is filled at 96% by NULL TS packets (normal, > regarding the input stream bandwidth of 300kB/S) > => All the input PID seem to present in the output file > => The stream isn't decoded (normal as the CAT table isn't outputted by > gnutv) > => But, there are some discontinuities in the TS packets (a lot and for all > the PID) > > So, in summary, I'm observing discontinues when stream is going through the > sec0 device, if CAM is present or not. > Also, the CI adapter doesn't seem to react correctly when the CAM is hot > removed. > I can provide the TS files (from dvr0, from sec0 with CAM and without CAM) > if someone is interested. > > Does someone has a setup that show no discontinuities when a TS stream is > going through sec0? (with an input TS file) > I would like to test it as for me the CI interface doesn't seem to work for > the nGene cards. > > Best regards, > Sebastien. Ralph, Could you please take a look at the cxd2099 issues ? I have attached a version with my changes. I have tested a lot of different settings with the help of the chip datasheet. Scrambled programs are not handled correctly. I don't know if it is the TICLK/MCLKI which is too high or something, or the sync detector ? Also, as we have to set the TOCLK to max of 72MHz, there are way too much null packets added. Is there a way to solve this ? Thx -- Issa
/* * cxd2099.c: Driver for the CXD2099AR Common Interface Controller * * Copyright (C) 2010 DigitalDevices UG * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include <linux/version.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/io.h> #include "cxd2099.h" static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Print debugging information."); #define dprintk if (debug) printk struct cxd { struct dvb_ca_en50221 en; struct i2c_adapter *i2c; u8 adr; // u8 regs[0x23]; // u8 lastaddress; // u8 clk_reg_f; // u8 clk_reg_b; int mode; // u32 bitrate; // int ready; // int dr; int slot_stat; // u8 amem[1024]; // int amem_read; // int cammode; struct mutex lock; }; static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 data) { u8 m[2] = {reg, data}; struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2}; if (i2c_transfer(adapter, &msg, 1) != 1) { printk(KERN_ERR "cxd2099: Failed to write to I2C register %02x@%02x!\n", reg, adr); return -1; } return 0; } static int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 *data, u8 len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; if (i2c_transfer(adapter, &msg, 1) != 1) { printk(KERN_ERR "cxd2099: Failed to write to I2C!\n"); return -1; } return 0; } static int i2c_read(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 *data, u8 n) { struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = ®, .len = 1 }, {.addr = adr, .flags = I2C_M_RD, .buf = data, .len = n } }; if (i2c_transfer(adapter, msgs, 2) != 2) { printk(KERN_ERR "cxd2099: error in i2c_read\n"); return -1; } return 0; } static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr, u8 reg, u8 *val) { return i2c_read(adapter, adr, reg, val, 1); } static int read_block(struct cxd *ci, u8 reg, u8 *data, u8 n) { int status; status = i2c_write_reg(ci->i2c, ci->adr, 0, reg); if (!status) { // ci->lastaddress = adr; status = i2c_read(ci->i2c, ci->adr, 1, data, n); } return status; } static int read_reg(struct cxd *ci, u8 reg, u8 *val) { return read_block(ci, reg, val, 1); } static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[3] = { 2, address&0xff, address>>8 }; status = i2c_write(ci->i2c, ci->adr, addr, 3); if (!status) status = i2c_read(ci->i2c, ci->adr, 3, data, n); return status; } static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[3] = { 2, address&0xff, address>>8 }; status = i2c_write(ci->i2c, ci->adr, addr, 3); if (!status) { u8 buf[256] = {3}; memcpy(buf+1, data, n); status = i2c_write(ci->i2c, ci->adr, buf, n+1); } return status; } static int read_io(struct cxd *ci, u16 address, u8 *val) { int status; u8 addr[3] = { 2, address&0xff, address>>8 }; status = i2c_write(ci->i2c, ci->adr, addr, 3); if (!status) status = i2c_read(ci->i2c, ci->adr, 3, val, 1); return status; } static int write_io(struct cxd *ci, u16 address, u8 val) { int status; u8 addr[3] = { 2, address&0xff, address>>8 }; u8 buf[2] = { 3, val }; status = i2c_write(ci->i2c, ci->adr, addr, 3); if (!status) status = i2c_write(ci->i2c, ci->adr, buf, 2); return status; } static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) { int status; u8 b; status = i2c_write_reg(ci->i2c, ci->adr, 0, reg); if (!status) { status = i2c_read_reg(ci->i2c, ci->adr, 1, &b); if (!status) { b = (b & (~mask)) | val; status = i2c_write_reg(ci->i2c, ci->adr, 1, b); } } return status; } static int write_reg(struct cxd *ci, u8 reg, u8 val) { int status; status = i2c_write_reg(ci->i2c, ci->adr, 0, reg); if (!status) status = i2c_write_reg(ci->i2c, ci->adr, 1, val); return status; } /* #ifdef BUFFER_MODE static int write_block(struct cxd *ci, u8 adr, u8 *data, int n) { int status; u8 buf[256] = {1}; status = i2c_write_reg(ci->i2c, ci->adr, 0, adr); if (!status) { ci->lastaddress = adr; memcpy(buf+1, data, n); status = i2c_write(ci->i2c, ci->adr, buf, n+1); } return status; } #endif */ static void set_mode(struct cxd *ci, int mode) { if (mode == ci->mode) return; switch (mode) { case 0x00: /* IO mem */ write_regm(ci, 0x06, 0x00, 0x07); break; case 0x01: /* ATT mem */ write_regm(ci, 0x06, 0x02, 0x07); break; default: break; } ci->mode = mode; } /* static void cam_mode(struct cxd *ci, int mode) { if (mode == ci->cammode) return; switch (mode) { case 0x00: write_regm(ci, 0x20, 0x80, 0x80); break; case 0x01: printk(KERN_INFO "enable cam buffer mode\n"); // write_reg(ci, 0x0d, 0x00); // write_reg(ci, 0x0e, 0x01); write_regm(ci, 0x08, 0x40, 0x40); // read_reg(ci, 0x12, &dummy); write_regm(ci, 0x08, 0x80, 0x80); break; default: break; } ci->cammode = mode; } */ #define CHK_ERROR(s) if ((status = s)) break static int init(struct cxd *ci) { int status; dprintk("cxd2099: %s\n", __func__); mutex_lock(&ci->lock); ci->mode = -1; do { CHK_ERROR(write_reg(ci, 0x00, 0x00)); // CHK_ERROR(write_reg(ci, 0x01, 0x00)); // CHK_ERROR(write_reg(ci, 0x02, 0x10)); // CHK_ERROR(write_reg(ci, 0x03, 0x00)); // CHK_ERROR(write_reg(ci, 0x05, 0xFF)); // CHK_ERROR(write_reg(ci, 0x06, 0x1F)); // CHK_ERROR(write_reg(ci, 0x07, 0x1F)); // CHK_ERROR(write_reg(ci, 0x08, 0x28)); // CHK_ERROR(write_reg(ci, 0x14, 0x20)); // CHK_ERROR(write_reg(ci, 0x09, 0x4D)); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */ // CHK_ERROR(write_reg(ci, 0x0A, 0xA7)); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */ /* Sync detector */ // CHK_ERROR(write_reg(ci, 0x0B, 0x33)); // CHK_ERROR(write_reg(ci, 0x0C, 0x33)); // CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F)); // CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b)); // CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F)); // CHK_ERROR(write_reg(ci, 0x17, ci->clk_reg_f)); // CHK_ERROR(write_reg(ci, 0x20, 0x28)); /* Integer Divider, Falling Edge, Internal Sync, */ // CHK_ERROR(write_reg(ci, 0x21, 0x00)); /* MCLKI = TICLK/8 */ // CHK_ERROR(write_reg(ci, 0x22, 0x07)); /* MCLKI = TICLK/8 */ // CHK_ERROR(write_regm(ci, 0x20, 0x80, 0x80)); /* Reset CAM state machine */ // CHK_ERROR(write_regm(ci, 0x03, 0x02, 02)); /* Enable IREQA Interrupt */ // CHK_ERROR(write_reg(ci, 0x01, 0x04)); /* Enable CD Interrupt */ // CHK_ERROR(write_reg(ci, 0x00, 0x31)); /* Enable TS1,Hot Swap,Slot A */ // CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08)); /* Put TS in bypass */ // Shutdown everything CHK_ERROR(write_reg(ci, 0x00, 0x00)); // Enable CDA interrupt CHK_ERROR(write_reg(ci, 0x01, 0x04)); // DA from CAM has priority CHK_ERROR(write_reg(ci, 0x02, 0x10)); // Enable IREQA interrupt, PCMCIA timout CHK_ERROR(write_reg(ci, 0x03, 0x42)); // Clears interuption bits CHK_ERROR(write_reg(ci, 0x05, 0xFF)); // Reset PCMCIA slot A CHK_ERROR(write_reg(ci, 0x06, 0x1F)); // Disable vcc selection for slot b CHK_ERROR(write_reg(ci, 0x08, 0x2C)); // TS input serial mode C, TIVAL active LOW, MSB first, Polarity High CHK_ERROR(write_reg(ci, 0x09, 0x45)); // TS output serial mode B, falling edge, MSB first, TOSTART=8 CHK_ERROR(write_reg(ci, 0x0A, 0x47)); // Sync detector CHK_ERROR(write_reg(ci, 0x0B, 0x11)); CHK_ERROR(write_reg(ci, 0x0C, 0x11)); // TS output clock set to 72MHz CHK_ERROR(write_reg(ci, 0x14, 0x20)); CHK_ERROR(write_reg(ci, 0x15, 0x08)); CHK_ERROR(write_reg(ci, 0x16, 0x00)); CHK_ERROR(write_reg(ci, 0x17, 0x03)); // HC clear delay CHK_ERROR(write_reg(ci, 0x18, 0x00)); CHK_ERROR(write_reg(ci, 0x19, 0x00)); // Internal sync detector CHK_ERROR(write_reg(ci, 0x20, 0x80)); CHK_ERROR(write_reg(ci, 0x21, 0x00)); CHK_ERROR(write_reg(ci, 0x22, 0x00)); // TS Hot swap, Global interface enable card A CHK_ERROR(write_reg(ci, 0x00, 0x31)); /* ci->cammode = -1; #ifdef BUFFER_MODE cam_mode(ci, 0); #endif */ } while (0); mutex_unlock(&ci->lock); return 0; } static int read_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address) { struct cxd *ci = ca->data; u8 val; mutex_lock(&ci->lock); set_mode(ci, 1); read_pccard(ci, address, &val, 1); mutex_unlock(&ci->lock); return val; } static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 1); write_pccard(ci, address, &value, 1); mutex_unlock(&ci->lock); return 0; } static int read_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address) { struct cxd *ci = ca->data; u8 val; mutex_lock(&ci->lock); set_mode(ci, 0); read_io(ci, address, &val); mutex_unlock(&ci->lock); return val; } static int write_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 0); write_io(ci, address, value); mutex_unlock(&ci->lock); return 0; } static int slot_reset(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; dprintk("cxd2099: %s\n", __func__); mutex_lock(&ci->lock); // cam_mode(ci, 0); // write_reg(ci, 0x00, 0x21); // write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x00, 0x31); write_regm(ci, 0x20, 0x80, 0x80); // write_reg(ci, 0x03, 0x02); // ci->ready = 0; ci->mode = -1; msleep(1000); mutex_unlock(&ci->lock); return 0; } static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; printk(KERN_INFO "cxd2099: slot_shutdown\n"); mutex_lock(&ci->lock); /* write_regm(ci, 0x09, 0x08, 0x08); */ write_regm(ci, 0x20, 0x80, 0x80); write_reg(ci, 0x00, 0x00); ci->mode = -1; mutex_unlock(&ci->lock); return 0; /* shutdown(ci); */ } static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; dprintk("cxd2099: %s\n", __func__); mutex_lock(&ci->lock); // bypass CAM off // write_regm(ci, 0x09, 0x00, 0x08); // set_mode(ci, 0); /* #ifdef BUFFER_MODE cam_mode(ci, 1); #endif */ mutex_unlock(&ci->lock); return 0; } static int campoll(struct cxd *ci) { u8 istat; read_reg(ci, 0x04, &istat); if (!istat) return 0; write_reg(ci, 0x05, istat); if (istat&0x40) { // ci->dr = 1; dprintk(KERN_INFO "cxd2099: read buffer INT\n"); } if (istat&0x20) dprintk(KERN_INFO "cxd2099: write buffer INT\n"); if (istat&0x80) dprintk(KERN_INFO "cxd2099: PCMCIA timeout\n"); if (istat&2) { u8 slotstat; read_reg(ci, 0x01, &slotstat); if (!(2&slotstat)) { if (!ci->slot_stat) { ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT; // write_regm(ci, 0x03, 0x08, 0x08); dprintk(KERN_INFO "cxd2099: DVB_CA_EN50221_POLL_CAM_PRESENT\n"); } } else { if (ci->slot_stat) { ci->slot_stat = 0; // write_regm(ci, 0x03, 0x00, 0x08); dprintk(KERN_INFO "cxd2099: NO CAM\n"); // ci->ready = 0; } } if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { // ci->ready = 1; ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; dprintk(KERN_INFO "cxd2099: READY\n"); } } return 0; } static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open) { struct cxd *ci = ca->data; // u8 slotstat; mutex_lock(&ci->lock); campoll(ci); // read_reg(ci, 0x01, &slotstat); mutex_unlock(&ci->lock); return ci->slot_stat; } /* #ifdef BUFFER_MODE static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; u8 msb, lsb; u16 len; mutex_lock(&ci->lock); campoll(ci); mutex_unlock(&ci->lock); dprintk(KERN_INFO "read_data\n"); if (!ci->dr) return 0; mutex_lock(&ci->lock); read_reg(ci, 0x0f, &msb); read_reg(ci, 0x10, &lsb); len = (msb<<8)|lsb; read_block(ci, 0x12, ebuf, len); ci->dr = 0; mutex_unlock(&ci->lock); return len; } static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); dprintk(KERN_INFO "write_data %d\n", ecount); write_reg(ci, 0x0d, ecount>>8); write_reg(ci, 0x0e, ecount&0xff); write_block(ci, 0x11, ebuf, ecount); mutex_unlock(&ci->lock); return ecount; } #endif */ static struct dvb_ca_en50221 en_templ = { .read_attribute_mem = read_attribute_mem, .write_attribute_mem = write_attribute_mem, .read_cam_control = read_cam_control, .write_cam_control = write_cam_control, .slot_reset = slot_reset, .slot_shutdown = slot_shutdown, .slot_ts_enable = slot_ts_enable, .poll_slot_status = poll_slot_status, /* #ifdef BUFFER_MODE .read_data = read_data, .write_data = write_data, #endif */ }; struct dvb_ca_en50221 *cxd2099_attach(u8 adr, void *priv, struct i2c_adapter *i2c) { struct cxd *ci = 0; // u32 bitrate = 62000000; u8 val; if (i2c_read_reg(i2c, adr, 0, &val) < 0) { printk(KERN_ERR "No CXD2099AR detected at %02x\n", adr); return 0; } ci = kmalloc(sizeof(struct cxd), GFP_KERNEL); if (!ci) return 0; memset(ci, 0, sizeof(*ci)); mutex_init(&ci->lock); ci->i2c = i2c; ci->adr = adr; // ci->lastaddress = 0xff; // ci->clk_reg_b = 0x4a; // ci->clk_reg_f = 0x1b; // ci->bitrate = bitrate; memcpy(&ci->en, &en_templ, sizeof(en_templ)); ci->en.data = ci; init(ci); printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->adr); return &ci->en; } EXPORT_SYMBOL(cxd2099_attach); MODULE_DESCRIPTION("cxd2099"); MODULE_AUTHOR("Ralph Metzler <rjkm@xxxxxxxxxxxxxx>"); MODULE_LICENSE("GPL");