Hi Laurent, Thanks for your reworking and improvements here. The documentation additions look good. Only one grammar fixup found inline in the struct fdp1_ctx which isn't critical (and could have been from my original submission), so don't worry about it unless there ends up being another respin. -- Regards Kieran On 24/10/16 10:03, Laurent Pinchart wrote: > From: Kieran Bingham <kieran+renesas@xxxxxxxxxxx> > > The FDP1 driver performs advanced de-interlacing on a memory 2 memory > based video stream, and supports conversion from YCbCr/YUV > to RGB pixel formats > > Signed-off-by: Kieran Bingham <kieran+renesas@xxxxxxxxxxx> > Reviewed-by: Laurent Pinchart <laurent.pinchart@xxxxxxxxxxxxxxxx> > Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@xxxxxxxxxxxxxxxx> > --- > Changes since v3: > > - Squashed all driver changes together > - Documented deinterlacing modes > - Capitalized the 2D and 3D abbreviations > --- > Documentation/media/v4l-drivers/index.rst | 1 + > Documentation/media/v4l-drivers/rcar-fdp1.rst | 37 + > MAINTAINERS | 9 + > drivers/media/platform/Kconfig | 13 + > drivers/media/platform/Makefile | 1 + > drivers/media/platform/rcar_fdp1.c | 2446 +++++++++++++++++++++++++ > 6 files changed, 2507 insertions(+) > create mode 100644 Documentation/media/v4l-drivers/rcar-fdp1.rst > create mode 100644 drivers/media/platform/rcar_fdp1.c > > diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst > index acde3ed7860f..a606d1cdac13 100644 > --- a/Documentation/media/v4l-drivers/index.rst > +++ b/Documentation/media/v4l-drivers/index.rst > @@ -48,6 +48,7 @@ For more details see the file COPYING in the source distribution of Linux. > pvrusb2 > pxa_camera > radiotrack > + rcar-fdp1 > saa7134 > sh_mobile_ceu_camera > si470x > diff --git a/Documentation/media/v4l-drivers/rcar-fdp1.rst b/Documentation/media/v4l-drivers/rcar-fdp1.rst > new file mode 100644 > index 000000000000..a59b1e8e3e9c > --- /dev/null > +++ b/Documentation/media/v4l-drivers/rcar-fdp1.rst > @@ -0,0 +1,37 @@ > +Renesas R-Car Fine Display Processor (FDP1) Driver > +================================================== > + > +The R-Car FDP1 driver implements driver-specific controls as follows. > + > +``V4L2_CID_DEINTERLACING_MODE (menu)`` > + The video deinterlacing mode (such as Bob, Weave, ...). The R-Car FDP1 > + driver implements the following modes. > + > +.. flat-table:: > + :header-rows: 0 > + :stub-columns: 0 > + :widths: 1 4 > + > + * - ``"Progressive" (0)`` > + - The input image video stream is progressive (not interlaced). No > + deinterlacing is performed. Apart from (optional) format and encoding > + conversion output frames are identical to the input frames. > + * - ``"Adaptive 2D/3D" (1)`` > + - Motion adaptive version of 2D and 3D deinterlacing. Use 3D deinterlacing > + in the presence of fast motion and 2D deinterlacing with diagonal > + interpolation otherwise. > + * - ``"Fixed 2D" (2)`` > + - The current field is scaled vertically by averaging adjacent lines to > + recover missing lines. This method is also known as blending or Line > + Averaging (LAV). > + * - ``"Fixed 3D" (3)`` > + - The previous and next fields are averaged to recover lines missing from > + the current field. This method is also known as Field Averaging (FAV). > + * - ``"Previous field" (4)`` > + - The current field is weaved with the previous field, i.e. the previous > + field is used to fill missing lines from the current field. This method > + is also known as weave deinterlacing. > + * - ``"Next field" (5)`` > + - The current field is weaved with the next field, i.e. the next field is > + used to fill missing lines from the current field. This method is also > + known as weave deinterlacing. Doc's look good. > diff --git a/MAINTAINERS b/MAINTAINERS > index 1cd38a7e0064..a61bebacee45 100644 > --- a/MAINTAINERS > +++ b/MAINTAINERS > @@ -7712,6 +7712,15 @@ F: Documentation/devicetree/bindings/media/renesas,fcp.txt > F: drivers/media/platform/rcar-fcp.c > F: include/media/rcar-fcp.h > > +MEDIA DRIVERS FOR RENESAS - FDP1 > +M: Kieran Bingham <kieran@xxxxxxxxxxx> > +L: linux-media@xxxxxxxxxxxxxxx > +L: linux-renesas-soc@xxxxxxxxxxxxxxx > +T: git git://linuxtv.org/media_tree.git > +S: Supported > +F: Documentation/devicetree/bindings/media/renesas,fdp1.txt > +F: drivers/media/platform/rcar_fdp1.c > + > MEDIA DRIVERS FOR RENESAS - VIN > M: Niklas Söderlund <niklas.soderlund@xxxxxxxxxxxx> > L: linux-media@xxxxxxxxxxxxxxx > diff --git a/drivers/media/platform/Kconfig b/drivers/media/platform/Kconfig > index ce4a96fccc43..414b69e5333c 100644 > --- a/drivers/media/platform/Kconfig > +++ b/drivers/media/platform/Kconfig > @@ -290,6 +290,19 @@ config VIDEO_SH_VEU > Support for the Video Engine Unit (VEU) on SuperH and > SH-Mobile SoCs. > > +config VIDEO_RENESAS_FDP1 > + tristate "Renesas Fine Display Processor" > + depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA > + depends on ARCH_SHMOBILE || COMPILE_TEST > + select VIDEOBUF2_DMA_CONTIG > + select V4L2_MEM2MEM_DEV > + ---help--- > + This is a V4L2 driver for the Renesas Fine Display Processor > + providing colour space conversion, and de-interlacing features. > + > + To compile this driver as a module, choose M here: the module > + will be called rcar_fdp1. > + > config VIDEO_RENESAS_JPU > tristate "Renesas JPEG Processing Unit" > depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA > diff --git a/drivers/media/platform/Makefile b/drivers/media/platform/Makefile > index 40b18d12726e..ad7a230904ce 100644 > --- a/drivers/media/platform/Makefile > +++ b/drivers/media/platform/Makefile > @@ -48,6 +48,7 @@ obj-$(CONFIG_VIDEO_SH_VOU) += sh_vou.o > obj-$(CONFIG_SOC_CAMERA) += soc_camera/ > > obj-$(CONFIG_VIDEO_RENESAS_FCP) += rcar-fcp.o > +obj-$(CONFIG_VIDEO_RENESAS_FDP1) += rcar_fdp1.o > obj-$(CONFIG_VIDEO_RENESAS_JPU) += rcar_jpu.o > obj-$(CONFIG_VIDEO_RENESAS_VSP1) += vsp1/ > > diff --git a/drivers/media/platform/rcar_fdp1.c b/drivers/media/platform/rcar_fdp1.c > new file mode 100644 > index 000000000000..58c600782773 > --- /dev/null > +++ b/drivers/media/platform/rcar_fdp1.c > @@ -0,0 +1,2446 @@ > +/* > + * Renesas RCar Fine Display Processor > + * > + * Video format converter and frame deinterlacer device. > + * > + * Author: Kieran Bingham, <kieran@xxxxxxxxxxx> > + * Copyright (c) 2016 Renesas Electronics Corporation. > + * > + * This code is developed and inspired from the vim2m, rcar_jpu, > + * m2m-deinterlace, and vsp1 drivers. > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License as published by the > + * Free Software Foundation; either version 2 of the > + * License, or (at your option) any later version > + */ > + > +#include <linux/clk.h> > +#include <linux/delay.h> > +#include <linux/dma-mapping.h> > +#include <linux/fs.h> > +#include <linux/interrupt.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > +#include <linux/platform_device.h> > +#include <linux/pm_runtime.h> > +#include <linux/sched.h> > +#include <linux/slab.h> > +#include <linux/timer.h> > +#include <media/rcar-fcp.h> > +#include <media/v4l2-ctrls.h> > +#include <media/v4l2-device.h> > +#include <media/v4l2-event.h> > +#include <media/v4l2-ioctl.h> > +#include <media/v4l2-mem2mem.h> > +#include <media/videobuf2-dma-contig.h> > + > +static unsigned int debug; > +module_param(debug, uint, 0644); > +MODULE_PARM_DESC(debug, "activate debug info"); > + > +/* Minimum and maximum frame width/height */ > +#define FDP1_MIN_W 80U > +#define FDP1_MIN_H 80U > + > +#define FDP1_MAX_W 3840U > +#define FDP1_MAX_H 2160U > + > +#define FDP1_MAX_PLANES 3U > +#define FDP1_MAX_STRIDE 8190U > + > +/* Flags that indicate a format can be used for capture/output */ > +#define FDP1_CAPTURE BIT(0) > +#define FDP1_OUTPUT BIT(1) > + > +#define DRIVER_NAME "rcar_fdp1" > + > +/* Number of Job's to have available on the processing queue */ > +#define FDP1_NUMBER_JOBS 8 > + > +#define dprintk(fdp1, fmt, arg...) \ > + v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg) > + > +/* > + * FDP1 registers and bits > + */ > + > +/* FDP1 start register - Imm */ > +#define FD1_CTL_CMD 0x0000 > +#define FD1_CTL_CMD_STRCMD BIT(0) > + > +/* Sync generator register - Imm */ > +#define FD1_CTL_SGCMD 0x0004 > +#define FD1_CTL_SGCMD_SGEN BIT(0) > + > +/* Register set end register - Imm */ > +#define FD1_CTL_REGEND 0x0008 > +#define FD1_CTL_REGEND_REGEND BIT(0) > + > +/* Channel activation register - Vupdt */ > +#define FD1_CTL_CHACT 0x000c > +#define FD1_CTL_CHACT_SMW BIT(9) > +#define FD1_CTL_CHACT_WR BIT(8) > +#define FD1_CTL_CHACT_SMR BIT(3) > +#define FD1_CTL_CHACT_RD2 BIT(2) > +#define FD1_CTL_CHACT_RD1 BIT(1) > +#define FD1_CTL_CHACT_RD0 BIT(0) > + > +/* Operation Mode Register - Vupdt */ > +#define FD1_CTL_OPMODE 0x0010 > +#define FD1_CTL_OPMODE_PRG BIT(4) > +#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0) > +#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0) > +#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0) > + > +#define FD1_CTL_VPERIOD 0x0014 > +#define FD1_CTL_CLKCTRL 0x0018 > +#define FD1_CTL_CLKCTRL_CSTP_N BIT(0) > + > +/* Software reset register */ > +#define FD1_CTL_SRESET 0x001c > +#define FD1_CTL_SRESET_SRST BIT(0) > + > +/* Control status register (V-update-status) */ > +#define FD1_CTL_STATUS 0x0024 > +#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16) > +#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16 > +#define FD1_CTL_STATUS_SGREGSET BIT(10) > +#define FD1_CTL_STATUS_SGVERR BIT(9) > +#define FD1_CTL_STATUS_SGFREND BIT(8) > +#define FD1_CTL_STATUS_BSY BIT(0) > + > +#define FD1_CTL_VCYCLE_STAT 0x0028 > + > +/* Interrupt enable register */ > +#define FD1_CTL_IRQENB 0x0038 > +/* Interrupt status register */ > +#define FD1_CTL_IRQSTA 0x003c > +/* Interrupt control register */ > +#define FD1_CTL_IRQFSET 0x0040 > + > +/* Common IRQ Bit settings */ > +#define FD1_CTL_IRQ_VERE BIT(16) > +#define FD1_CTL_IRQ_VINTE BIT(4) > +#define FD1_CTL_IRQ_FREE BIT(0) > +#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \ > + FD1_CTL_IRQ_VINTE | \ > + FD1_CTL_IRQ_FREE) > + > +/* RPF */ > +#define FD1_RPF_SIZE 0x0060 > +#define FD1_RPF_SIZE_MASK GENMASK(12, 0) > +#define FD1_RPF_SIZE_H_SHIFT 16 > +#define FD1_RPF_SIZE_V_SHIFT 0 > + > +#define FD1_RPF_FORMAT 0x0064 > +#define FD1_RPF_FORMAT_CIPM BIT(16) > +#define FD1_RPF_FORMAT_RSPYCS BIT(13) > +#define FD1_RPF_FORMAT_RSPUVS BIT(12) > +#define FD1_RPF_FORMAT_CF BIT(8) > + > +#define FD1_RPF_PSTRIDE 0x0068 > +#define FD1_RPF_PSTRIDE_Y_SHIFT 16 > +#define FD1_RPF_PSTRIDE_C_SHIFT 0 > + > +/* RPF0 Source Component Y Address register */ > +#define FD1_RPF0_ADDR_Y 0x006c > + > +/* RPF1 Current Picture Registers */ > +#define FD1_RPF1_ADDR_Y 0x0078 > +#define FD1_RPF1_ADDR_C0 0x007c > +#define FD1_RPF1_ADDR_C1 0x0080 > + > +/* RPF2 next picture register */ > +#define FD1_RPF2_ADDR_Y 0x0084 > + > +#define FD1_RPF_SMSK_ADDR 0x0090 > +#define FD1_RPF_SWAP 0x0094 > + > +/* WPF */ > +#define FD1_WPF_FORMAT 0x00c0 > +#define FD1_WPF_FORMAT_PDV_SHIFT 24 > +#define FD1_WPF_FORMAT_FCNL BIT(20) > +#define FD1_WPF_FORMAT_WSPYCS BIT(15) > +#define FD1_WPF_FORMAT_WSPUVS BIT(14) > +#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9) > +#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9) > +#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9) > +#define FD1_WPF_FORMAT_CSC BIT(8) > + > +#define FD1_WPF_RNDCTL 0x00c4 > +#define FD1_WPF_RNDCTL_CBRM BIT(28) > +#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12) > +#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12) > +#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12) > + > +#define FD1_WPF_PSTRIDE 0x00c8 > +#define FD1_WPF_PSTRIDE_Y_SHIFT 16 > +#define FD1_WPF_PSTRIDE_C_SHIFT 0 > + > +/* WPF Destination picture */ > +#define FD1_WPF_ADDR_Y 0x00cc > +#define FD1_WPF_ADDR_C0 0x00d0 > +#define FD1_WPF_ADDR_C1 0x00d4 > +#define FD1_WPF_SWAP 0x00d8 > +#define FD1_WPF_SWAP_OSWAP_SHIFT 0 > +#define FD1_WPF_SWAP_SSWAP_SHIFT 4 > + > +/* WPF/RPF Common */ > +#define FD1_RWPF_SWAP_BYTE BIT(0) > +#define FD1_RWPF_SWAP_WORD BIT(1) > +#define FD1_RWPF_SWAP_LWRD BIT(2) > +#define FD1_RWPF_SWAP_LLWD BIT(3) > + > +/* IPC */ > +#define FD1_IPC_MODE 0x0100 > +#define FD1_IPC_MODE_DLI BIT(8) > +#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0) > +#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0) > +#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0) > +#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0) > +#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0) > + > +#define FD1_IPC_SMSK_THRESH 0x0104 > +#define FD1_IPC_SMSK_THRESH_CONST 0x00010002 > + > +#define FD1_IPC_COMB_DET 0x0108 > +#define FD1_IPC_COMB_DET_CONST 0x00200040 > + > +#define FD1_IPC_MOTDEC 0x010c > +#define FD1_IPC_MOTDEC_CONST 0x00008020 > + > +/* DLI registers */ > +#define FD1_IPC_DLI_BLEND 0x0120 > +#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02 > + > +#define FD1_IPC_DLI_HGAIN 0x0124 > +#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff > + > +#define FD1_IPC_DLI_SPRS 0x0128 > +#define FD1_IPC_DLI_SPRS_CONST 0x009004ff > + > +#define FD1_IPC_DLI_ANGLE 0x012c > +#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c > + > +#define FD1_IPC_DLI_ISOPIX0 0x0130 > +#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10 > + > +#define FD1_IPC_DLI_ISOPIX1 0x0134 > +#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10 > + > +/* Sensor registers */ > +#define FD1_IPC_SENSOR_TH0 0x0140 > +#define FD1_IPC_SENSOR_TH0_CONST 0x20208080 > + > +#define FD1_IPC_SENSOR_TH1 0x0144 > +#define FD1_IPC_SENSOR_TH1_CONST 0 > + > +#define FD1_IPC_SENSOR_CTL0 0x0170 > +#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201 > + > +#define FD1_IPC_SENSOR_CTL1 0x0174 > +#define FD1_IPC_SENSOR_CTL1_CONST 0 > + > +#define FD1_IPC_SENSOR_CTL2 0x0178 > +#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16 > +#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0 > + > +#define FD1_IPC_SENSOR_CTL3 0x017c > +#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16 > +#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0 > + > +/* Line memory pixel number register */ > +#define FD1_IPC_LMEM 0x01e0 > +#define FD1_IPC_LMEM_LINEAR 1024 > +#define FD1_IPC_LMEM_TILE 960 > + > +/* Internal Data (HW Version) */ > +#define FD1_IP_INTDATA 0x0800 > +#define FD1_IP_H3 0x02010101 > +#define FD1_IP_M3W 0x02010202 > + > +/* LUTs */ > +#define FD1_LUT_DIF_ADJ 0x1000 > +#define FD1_LUT_SAD_ADJ 0x1400 > +#define FD1_LUT_BLD_GAIN 0x1800 > +#define FD1_LUT_DIF_GAIN 0x1c00 > +#define FD1_LUT_MDET 0x2000 > + > +/** > + * struct fdp1_fmt - The FDP1 internal format data > + * @fourcc: the fourcc code, to match the V4L2 API > + * @bpp: bits per pixel per plane > + * @num_planes: number of planes > + * @hsub: horizontal subsampling factor > + * @vsub: vertical subsampling factor > + * @fmt: 7-bit format code for the fdp1 hardware > + * @swap_yc: the Y and C components are swapped (Y comes before C) > + * @swap_uv: the U and V components are swapped (V comes before U) > + * @swap: swap register control > + * @types: types of queue this format is applicable to > + */ > +struct fdp1_fmt { > + u32 fourcc; > + u8 bpp[3]; > + u8 num_planes; > + u8 hsub; > + u8 vsub; > + u8 fmt; > + bool swap_yc; > + bool swap_uv; > + u8 swap; > + u8 types; > +}; > + > +static const struct fdp1_fmt fdp1_formats[] = { > + /* RGB formats are only supported by the Write Pixel Formatter */ > + > + { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD, > + FDP1_CAPTURE }, > + { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD, > + FDP1_CAPTURE }, > + > + /* YUV Formats are supported by Read and Write Pixel Formatters */ > + > + { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > + { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true, > + FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | > + FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, > + FDP1_CAPTURE | FDP1_OUTPUT }, > +}; > + > +static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt) > +{ > + return fmt->fmt <= 0x1b; /* Last RGB code */ > +} > + > +/* > + * FDP1 Lookup tables range from 0...255 only > + * > + * Each table must be less than 256 entries, and all tables > + * are padded out to 256 entries by duplicating the last value. > + */ > +static const u8 fdp1_diff_adj[] = { > + 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, > + 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, > + 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, > +}; > + > +static const u8 fdp1_sad_adj[] = { > + 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, > + 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, > + 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, > +}; > + > +static const u8 fdp1_bld_gain[] = { > + 0x80, > +}; > + > +static const u8 fdp1_dif_gain[] = { > + 0x80, > +}; > + > +static const u8 fdp1_mdet[] = { > + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, > + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, > + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, > + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, > + 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, > + 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, > + 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, > + 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, > + 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, > + 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, > + 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, > + 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, > + 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, > + 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, > + 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, > + 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, > + 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, > + 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, > + 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, > + 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, > + 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, > + 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, > + 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, > + 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, > + 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, > + 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, > + 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, > + 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, > + 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, > + 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, > + 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, > + 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff > +}; > + > +/* Per-queue, driver-specific private data */ > +struct fdp1_q_data { > + const struct fdp1_fmt *fmt; > + struct v4l2_pix_format_mplane format; > + > + unsigned int vsize; > + unsigned int stride_y; > + unsigned int stride_c; > +}; > + > +static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat) > +{ > + const struct fdp1_fmt *fmt; > + unsigned int i; > + > + for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) { > + fmt = &fdp1_formats[i]; > + if (fmt->fourcc == pixelformat) > + return fmt; > + } > + > + return NULL; > +} > + > +enum fdp1_deint_mode { > + FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */ > + FDP1_ADAPT2D3D, > + FDP1_FIXED2D, > + FDP1_FIXED3D, > + FDP1_PREVFIELD, > + FDP1_NEXTFIELD, > +}; > + > +#define FDP1_DEINT_MODE_USES_NEXT(mode) \ > + (mode == FDP1_ADAPT2D3D || \ > + mode == FDP1_FIXED3D || \ > + mode == FDP1_NEXTFIELD) > + > +#define FDP1_DEINT_MODE_USES_PREV(mode) \ > + (mode == FDP1_ADAPT2D3D || \ > + mode == FDP1_FIXED3D || \ > + mode == FDP1_PREVFIELD) > + > +/* > + * FDP1 operates on potentially 3 fields, which are tracked > + * from the VB buffers using this context structure. > + * Will always be a field or a full frame, never two fields. > + */ > +struct fdp1_field_buffer { > + struct vb2_v4l2_buffer *vb; > + dma_addr_t addrs[3]; > + > + /* Should be NONE:TOP:BOTTOM only */ > + enum v4l2_field field; > + > + /* Flag to indicate this is the last field in the vb */ > + bool last_field; > + > + /* Buffer queue lists */ > + struct list_head list; > +}; > + > +struct fdp1_buffer { > + struct v4l2_m2m_buffer m2m_buf; > + struct fdp1_field_buffer fields[2]; > + unsigned int num_fields; > +}; > + > +static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb) > +{ > + return container_of(vb, struct fdp1_buffer, m2m_buf.vb); > +} > + > +struct fdp1_job { > + struct fdp1_field_buffer *previous; > + struct fdp1_field_buffer *active; > + struct fdp1_field_buffer *next; > + struct fdp1_field_buffer *dst; > + > + /* A job can only be on one list at a time */ > + struct list_head list; > +}; > + > +struct fdp1_dev { > + struct v4l2_device v4l2_dev; > + struct video_device vfd; > + > + struct mutex dev_mutex; > + spinlock_t irqlock; > + spinlock_t device_process_lock; > + > + void __iomem *regs; > + unsigned int irq; > + struct device *dev; > + > + /* Job Queues */ > + struct fdp1_job jobs[FDP1_NUMBER_JOBS]; > + struct list_head free_job_list; > + struct list_head queued_job_list; > + struct list_head hw_job_list; > + > + unsigned int clk_rate; > + > + struct rcar_fcp_device *fcp; > + struct v4l2_m2m_dev *m2m_dev; > +}; > + > +struct fdp1_ctx { > + struct v4l2_fh fh; > + struct fdp1_dev *fdp1; > + > + struct v4l2_ctrl_handler hdl; > + unsigned int sequence; > + > + /* Processed buffers in this transaction */ > + u8 num_processed; > + > + /* Transaction length (i.e. how many buffers per transaction) */ > + u32 translen; > + > + /* Abort requested by m2m */ > + int aborting; > + > + /* Deinterlace processing mode */ > + enum fdp1_deint_mode deint_mode; > + > + /* > + * Adaptive 2D/3D mode uses a shared mask > + * This is allocated at streamon, if the ADAPT2D3D mode > + * is requested > + */ > + unsigned int smsk_size; > + dma_addr_t smsk_addr[2]; > + void *smsk_cpu; > + > + /* Capture pipeline, can specify an alpha value > + * for supported formats. 0-255 only > + */ > + unsigned char alpha; > + > + /* Source and destination queue data */ > + struct fdp1_q_data out_q; /* HW Source */ > + struct fdp1_q_data cap_q; /* HW Destination */ > + > + /* > + * Field Queues > + * Interlaced fields fields are used on 3 occasions, s/fields fields/fields/ > + * and tracked in this list. > + * > + * V4L2 Buffers are tracked inside the fdp1_buffer > + * and released when the last 'field' completes > + */ > + struct list_head fields_queue; > + unsigned int buffers_queued; > + > + /* > + * For de-interlacing we need to track our previous buffer > + * while preparing our job lists. > + */ > + struct fdp1_field_buffer *previous; > +}; > + > +static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh) > +{ > + return container_of(fh, struct fdp1_ctx, fh); > +} > + > +static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx, > + enum v4l2_buf_type type) > +{ > + if (V4L2_TYPE_IS_OUTPUT(type)) > + return &ctx->out_q; > + else > + return &ctx->cap_q; > +} > + > +/* > + * list_remove_job: Take the first item off the specified job list > + * > + * Returns: pointer to a job, or NULL if the list is empty. > + */ > +static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1, > + struct list_head *list) > +{ > + struct fdp1_job *job; > + unsigned long flags; > + > + spin_lock_irqsave(&fdp1->irqlock, flags); > + job = list_first_entry_or_null(list, struct fdp1_job, list); > + if (job) > + list_del(&job->list); > + spin_unlock_irqrestore(&fdp1->irqlock, flags); > + > + return job; > +} > + > +/* > + * list_add_job: Add a job to the specified job list > + * > + * Returns: void - always succeeds > + */ > +static void list_add_job(struct fdp1_dev *fdp1, > + struct list_head *list, > + struct fdp1_job *job) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&fdp1->irqlock, flags); > + list_add_tail(&job->list, list); > + spin_unlock_irqrestore(&fdp1->irqlock, flags); > +} > + > +static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1) > +{ > + return list_remove_job(fdp1, &fdp1->free_job_list); > +} > + > +static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job) > +{ > + /* Ensure that all residue from previous jobs is gone */ > + memset(job, 0, sizeof(struct fdp1_job)); > + > + list_add_job(fdp1, &fdp1->free_job_list, job); > +} > + > +static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job) > +{ > + list_add_job(fdp1, &fdp1->queued_job_list, job); > +} > + > +static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1) > +{ > + return list_remove_job(fdp1, &fdp1->queued_job_list); > +} > + > +static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job) > +{ > + list_add_job(fdp1, &fdp1->hw_job_list, job); > +} > + > +static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1) > +{ > + return list_remove_job(fdp1, &fdp1->hw_job_list); > +} > + > +/* > + * Buffer lists handling > + */ > +static void fdp1_field_complete(struct fdp1_ctx *ctx, > + struct fdp1_field_buffer *fbuf) > +{ > + /* job->previous may be on the first field */ > + if (!fbuf) > + return; > + > + if (fbuf->last_field) > + v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE); > +} > + > +static void fdp1_queue_field(struct fdp1_ctx *ctx, > + struct fdp1_field_buffer *fbuf) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); > + list_add_tail(&fbuf->list, &ctx->fields_queue); > + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); > + > + ctx->buffers_queued++; > +} > + > +static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx) > +{ > + struct fdp1_field_buffer *fbuf; > + unsigned long flags; > + > + ctx->buffers_queued--; > + > + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); > + fbuf = list_first_entry_or_null(&ctx->fields_queue, > + struct fdp1_field_buffer, list); > + if (fbuf) > + list_del(&fbuf->list); > + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); > + > + return fbuf; > +} > + > +/* > + * Return the next field in the queue - or NULL, > + * without removing the item from the list > + */ > +static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx) > +{ > + struct fdp1_field_buffer *fbuf; > + unsigned long flags; > + > + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); > + fbuf = list_first_entry_or_null(&ctx->fields_queue, > + struct fdp1_field_buffer, list); > + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); > + > + return fbuf; > +} > + > +static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg) > +{ > + u32 value = ioread32(fdp1->regs + reg); > + > + if (debug >= 2) > + dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg); > + > + return value; > +} > + > +static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg) > +{ > + if (debug >= 2) > + dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg); > + > + iowrite32(val, fdp1->regs + reg); > +} > + > +/* IPC registers are to be programmed with constant values */ > +static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx) > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + > + fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH); > + fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET); > + fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC); > + > + fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND); > + fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN); > + fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS); > + fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE); > + fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0); > + fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1); > +} > + > + > +static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx) > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + struct fdp1_q_data *src_q_data = &ctx->out_q; > + unsigned int x0, x1; > + unsigned int hsize = src_q_data->format.width; > + unsigned int vsize = src_q_data->format.height; > + > + x0 = hsize / 3; > + x1 = 2 * hsize / 3; > + > + fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0); > + fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1); > + fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0); > + fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1); > + > + fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) | > + ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT), > + FD1_IPC_SENSOR_CTL2); > + > + fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) | > + (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT), > + FD1_IPC_SENSOR_CTL3); > +} > + > +/* > + * fdp1_write_lut: Write a padded LUT to the hw > + * > + * FDP1 uses constant data for de-interlacing processing, > + * with large tables. These hardware tables are all 256 bytes > + * long, however they often contain repeated data at the end. > + * > + * The last byte of the table is written to all remaining entries. > + */ > +static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut, > + unsigned int len, unsigned int base) > +{ > + unsigned int i; > + u8 pad; > + > + /* Tables larger than the hw are clipped */ > + len = min(len, 256u); > + > + for (i = 0; i < len; i++) > + fdp1_write(fdp1, lut[i], base + (i*4)); > + > + /* Tables are padded with the last entry */ > + pad = lut[i-1]; > + > + for (; i < 256; i++) > + fdp1_write(fdp1, pad, base + (i*4)); > +} > + > +static void fdp1_set_lut(struct fdp1_dev *fdp1) > +{ > + fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj), > + FD1_LUT_DIF_ADJ); > + fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj), > + FD1_LUT_SAD_ADJ); > + fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain), > + FD1_LUT_BLD_GAIN); > + fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain), > + FD1_LUT_DIF_GAIN); > + fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet), > + FD1_LUT_MDET); > +} > + > +static void fdp1_configure_rpf(struct fdp1_ctx *ctx, > + struct fdp1_job *job) > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + u32 picture_size; > + u32 pstride; > + u32 format; > + u32 smsk_addr; > + > + struct fdp1_q_data *q_data = &ctx->out_q; > + > + /* Picture size is common to Source and Destination frames */ > + picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT) > + | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT); > + > + /* Strides */ > + pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT; > + if (q_data->format.num_planes > 1) > + pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT; > + > + /* Format control */ > + format = q_data->fmt->fmt; > + if (q_data->fmt->swap_yc) > + format |= FD1_RPF_FORMAT_RSPYCS; > + > + if (q_data->fmt->swap_uv) > + format |= FD1_RPF_FORMAT_RSPUVS; > + > + if (job->active->field == V4L2_FIELD_BOTTOM) { > + format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */ > + smsk_addr = ctx->smsk_addr[0]; > + } else { > + smsk_addr = ctx->smsk_addr[1]; > + } > + > + /* Deint mode is non-zero when deinterlacing */ > + if (ctx->deint_mode) > + format |= FD1_RPF_FORMAT_CIPM; > + > + fdp1_write(fdp1, format, FD1_RPF_FORMAT); > + fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP); > + fdp1_write(fdp1, picture_size, FD1_RPF_SIZE); > + fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE); > + fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR); > + > + /* Previous Field Channel (CH0) */ > + if (job->previous) > + fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y); > + > + /* Current Field Channel (CH1) */ > + fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y); > + fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0); > + fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1); > + > + /* Next Field Channel (CH2) */ > + if (job->next) > + fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y); > +} > + > +static void fdp1_configure_wpf(struct fdp1_ctx *ctx, > + struct fdp1_job *job) > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + struct fdp1_q_data *src_q_data = &ctx->out_q; > + struct fdp1_q_data *q_data = &ctx->cap_q; > + u32 pstride; > + u32 format; > + u32 swap; > + u32 rndctl; > + > + pstride = q_data->format.plane_fmt[0].bytesperline > + << FD1_WPF_PSTRIDE_Y_SHIFT; > + > + if (q_data->format.num_planes > 1) > + pstride |= q_data->format.plane_fmt[1].bytesperline > + << FD1_WPF_PSTRIDE_C_SHIFT; > + > + format = q_data->fmt->fmt; /* Output Format Code */ > + > + if (q_data->fmt->swap_yc) > + format |= FD1_WPF_FORMAT_WSPYCS; > + > + if (q_data->fmt->swap_uv) > + format |= FD1_WPF_FORMAT_WSPUVS; > + > + if (fdp1_fmt_is_rgb(q_data->fmt)) { > + /* Enable Colour Space conversion */ > + format |= FD1_WPF_FORMAT_CSC; > + > + /* Set WRTM */ > + if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709) > + format |= FD1_WPF_FORMAT_WRTM_709_16; > + else if (src_q_data->format.quantization == > + V4L2_QUANTIZATION_FULL_RANGE) > + format |= FD1_WPF_FORMAT_WRTM_601_0; > + else > + format |= FD1_WPF_FORMAT_WRTM_601_16; > + } > + > + /* Set an alpha value into the Pad Value */ > + format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT; > + > + /* Determine picture rounding and clipping */ > + rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */ > + rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP; > + > + /* WPF Swap needs both ISWAP and OSWAP setting */ > + swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT; > + swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT; > + > + fdp1_write(fdp1, format, FD1_WPF_FORMAT); > + fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL); > + fdp1_write(fdp1, swap, FD1_WPF_SWAP); > + fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE); > + > + fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y); > + fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0); > + fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1); > +} > + > +static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx, > + struct fdp1_job *job) > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT; > + u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */ > + u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */ > + > + /* De-interlacing Mode */ > + switch (ctx->deint_mode) { > + default: > + case FDP1_PROGRESSIVE: > + dprintk(fdp1, "Progressive Mode\n"); > + opmode |= FD1_CTL_OPMODE_PRG; > + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; > + break; > + case FDP1_ADAPT2D3D: > + dprintk(fdp1, "Adapt2D3D Mode\n"); > + if (ctx->sequence == 0 || ctx->aborting) > + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; > + else > + ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D; > + > + if (ctx->sequence > 1) { > + channels |= FD1_CTL_CHACT_SMW; > + channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; > + } > + > + if (ctx->sequence > 2) > + channels |= FD1_CTL_CHACT_SMR; > + > + break; > + case FDP1_FIXED3D: > + dprintk(fdp1, "Fixed 3D Mode\n"); > + ipcmode |= FD1_IPC_MODE_DIM_FIXED3D; > + /* Except for first and last frame, enable all channels */ > + if (!(ctx->sequence == 0 || ctx->aborting)) > + channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; > + break; > + case FDP1_FIXED2D: > + dprintk(fdp1, "Fixed 2D Mode\n"); > + ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; > + /* No extra channels enabled */ > + break; > + case FDP1_PREVFIELD: > + dprintk(fdp1, "Previous Field Mode\n"); > + ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD; > + channels |= FD1_CTL_CHACT_RD0; /* Previous */ > + break; > + case FDP1_NEXTFIELD: > + dprintk(fdp1, "Next Field Mode\n"); > + ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD; > + channels |= FD1_CTL_CHACT_RD2; /* Next */ > + break; > + } > + > + fdp1_write(fdp1, channels, FD1_CTL_CHACT); > + fdp1_write(fdp1, opmode, FD1_CTL_OPMODE); > + fdp1_write(fdp1, ipcmode, FD1_IPC_MODE); > +} > + > +/* > + * fdp1_device_process() - Run the hardware > + * > + * Configure and start the hardware to generate a single frame > + * of output given our input parameters. > + */ > +static int fdp1_device_process(struct fdp1_ctx *ctx) > + > +{ > + struct fdp1_dev *fdp1 = ctx->fdp1; > + struct fdp1_job *job; > + unsigned long flags; > + > + spin_lock_irqsave(&fdp1->device_process_lock, flags); > + > + /* Get a job to process */ > + job = get_queued_job(fdp1); > + if (!job) { > + /* > + * VINT can call us to see if we can queue another job. > + * If we have no work to do, we simply return. > + */ > + spin_unlock_irqrestore(&fdp1->device_process_lock, flags); > + return 0; > + } > + > + /* First Frame only? ... */ > + fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL); > + > + /* Set the mode, and configuration */ > + fdp1_configure_deint_mode(ctx, job); > + > + /* DLI Static Configuration */ > + fdp1_set_ipc_dli(ctx); > + > + /* Sensor Configuration */ > + fdp1_set_ipc_sensor(ctx); > + > + /* Setup the source picture */ > + fdp1_configure_rpf(ctx, job); > + > + /* Setup the destination picture */ > + fdp1_configure_wpf(ctx, job); > + > + /* Line Memory Pixel Number Register for linear access */ > + fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM); > + > + /* Enable Interrupts */ > + fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB); > + > + /* Finally, the Immediate Registers */ > + > + /* This job is now in the HW queue */ > + queue_hw_job(fdp1, job); > + > + /* Start the command */ > + fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD); > + > + /* Registers will update to HW at next VINT */ > + fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND); > + > + /* Enable VINT Generator */ > + fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD); > + > + spin_unlock_irqrestore(&fdp1->device_process_lock, flags); > + > + return 0; > +} > + > +/* > + * mem2mem callbacks > + */ > + > +/** > + * job_ready() - check whether an instance is ready to be scheduled to run > + */ > +static int fdp1_m2m_job_ready(void *priv) > +{ > + struct fdp1_ctx *ctx = priv; > + struct fdp1_q_data *src_q_data = &ctx->out_q; > + int srcbufs = 1; > + int dstbufs = 1; > + > + dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n", > + v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx), > + v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)); > + > + /* One output buffer is required for each field */ > + if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) > + dstbufs = 2; > + > + if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs > + || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) { > + dprintk(ctx->fdp1, "Not enough buffers available\n"); > + return 0; > + } > + > + return 1; > +} > + > +static void fdp1_m2m_job_abort(void *priv) > +{ > + struct fdp1_ctx *ctx = priv; > + > + dprintk(ctx->fdp1, "+\n"); > + > + /* Will cancel the transaction in the next interrupt handler */ > + ctx->aborting = 1; > + > + /* Immediate abort sequence */ > + fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD); > + fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET); > +} > + > +/* > + * fdp1_prepare_job: Prepare and queue a new job for a single action of work > + * > + * Prepare the next field, (or frame in progressive) and an output > + * buffer for the hardware to perform a single operation. > + */ > +static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx) > +{ > + struct vb2_v4l2_buffer *vbuf; > + struct fdp1_buffer *fbuf; > + struct fdp1_dev *fdp1 = ctx->fdp1; > + struct fdp1_job *job; > + unsigned int buffers_required = 1; > + > + dprintk(fdp1, "+\n"); > + > + if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) > + buffers_required = 2; > + > + if (ctx->buffers_queued < buffers_required) > + return NULL; > + > + job = fdp1_job_alloc(fdp1); > + if (!job) { > + dprintk(fdp1, "No free jobs currently available\n"); > + return NULL; > + } > + > + job->active = fdp1_dequeue_field(ctx); > + if (!job->active) { > + /* Buffer check should prevent this ever happening */ > + dprintk(fdp1, "No input buffers currently available\n"); > + > + fdp1_job_free(fdp1, job); > + return NULL; > + } > + > + dprintk(fdp1, "+ Buffer en-route...\n"); > + > + /* Source buffers have been prepared on our buffer_queue > + * Prepare our Output buffer > + */ > + vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); > + fbuf = to_fdp1_buffer(vbuf); > + job->dst = &fbuf->fields[0]; > + > + job->active->vb->sequence = ctx->sequence; > + job->dst->vb->sequence = ctx->sequence; > + ctx->sequence++; > + > + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) { > + job->previous = ctx->previous; > + > + /* Active buffer becomes the next job's previous buffer */ > + ctx->previous = job->active; > + } > + > + if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) { > + /* Must be called after 'active' is dequeued */ > + job->next = fdp1_peek_queued_field(ctx); > + } > + > + /* Transfer timestamps and flags from src->dst */ > + > + job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp; > + > + job->dst->vb->flags = job->active->vb->flags & > + V4L2_BUF_FLAG_TSTAMP_SRC_MASK; > + > + /* Ideally, the frame-end function will just 'check' to see > + * if there are more jobs instead > + */ > + ctx->translen++; > + > + /* Finally, Put this job on the processing queue */ > + queue_job(fdp1, job); > + > + dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen); > + > + return job; > +} > + > +/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task > + * > + * A single input buffer is taken and serialised into our fdp1_buffer > + * queue. The queue is then processed to create as many jobs as possible > + * from our available input. > + */ > +static void fdp1_m2m_device_run(void *priv) > +{ > + struct fdp1_ctx *ctx = priv; > + struct fdp1_dev *fdp1 = ctx->fdp1; > + struct vb2_v4l2_buffer *src_vb; > + struct fdp1_buffer *buf; > + unsigned int i; > + > + dprintk(fdp1, "+\n"); > + > + ctx->translen = 0; > + > + /* Get our incoming buffer of either one or two fields, or one frame */ > + src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); > + buf = to_fdp1_buffer(src_vb); > + > + for (i = 0; i < buf->num_fields; i++) { > + struct fdp1_field_buffer *fbuf = &buf->fields[i]; > + > + fdp1_queue_field(ctx, fbuf); > + dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n", > + i, fbuf->last_field); > + } > + > + /* Queue as many jobs as our data provides for */ > + while (fdp1_prepare_job(ctx)) > + ; > + > + if (ctx->translen == 0) { > + dprintk(fdp1, "No jobs were processed. M2M action complete\n"); > + v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); > + return; > + } > + > + /* Kick the job processing action */ > + fdp1_device_process(ctx); > +} > + > +/* > + * device_frame_end: > + * > + * Handles the M2M level after a buffer completion event. > + */ > +static void device_frame_end(struct fdp1_dev *fdp1, > + enum vb2_buffer_state state) > +{ > + struct fdp1_ctx *ctx; > + unsigned long flags; > + struct fdp1_job *job = get_hw_queued_job(fdp1); > + > + dprintk(fdp1, "+\n"); > + > + ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev); > + > + if (ctx == NULL) { > + v4l2_err(&fdp1->v4l2_dev, > + "Instance released before the end of transaction\n"); > + return; > + } > + > + ctx->num_processed++; > + > + /* > + * fdp1_field_complete will call buf_done only when the last vb2_buffer > + * reference is complete > + */ > + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) > + fdp1_field_complete(ctx, job->previous); > + else > + fdp1_field_complete(ctx, job->active); > + > + spin_lock_irqsave(&fdp1->irqlock, flags); > + v4l2_m2m_buf_done(job->dst->vb, state); > + job->dst = NULL; > + spin_unlock_irqrestore(&fdp1->irqlock, flags); > + > + /* Move this job back to the free job list */ > + fdp1_job_free(fdp1, job); > + > + dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n", > + ctx->num_processed, ctx->translen); > + > + if (ctx->num_processed == ctx->translen || > + ctx->aborting) { > + dprintk(ctx->fdp1, "Finishing transaction\n"); > + ctx->num_processed = 0; > + v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); > + } else { > + /* > + * For pipelined performance support, this would > + * be called from a VINT handler > + */ > + fdp1_device_process(ctx); > + } > +} > + > +/* > + * video ioctls > + */ > +static int fdp1_vidioc_querycap(struct file *file, void *priv, > + struct v4l2_capability *cap) > +{ > + strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver)); > + strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card)); > + snprintf(cap->bus_info, sizeof(cap->bus_info), > + "platform:%s", DRIVER_NAME); > + return 0; > +} > + > +static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type) > +{ > + unsigned int i, num; > + > + num = 0; > + > + for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) { > + if (fdp1_formats[i].types & type) { > + if (num == f->index) > + break; > + ++num; > + } > + } > + > + /* Format not found */ > + if (i >= ARRAY_SIZE(fdp1_formats)) > + return -EINVAL; > + > + /* Format found */ > + f->pixelformat = fdp1_formats[i].fourcc; > + > + return 0; > +} > + > +static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv, > + struct v4l2_fmtdesc *f) > +{ > + return fdp1_enum_fmt(f, FDP1_CAPTURE); > +} > + > +static int fdp1_enum_fmt_vid_out(struct file *file, void *priv, > + struct v4l2_fmtdesc *f) > +{ > + return fdp1_enum_fmt(f, FDP1_OUTPUT); > +} > + > +static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f) > +{ > + struct fdp1_q_data *q_data; > + struct fdp1_ctx *ctx = fh_to_ctx(priv); > + > + if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type)) > + return -EINVAL; > + > + q_data = get_q_data(ctx, f->type); > + f->fmt.pix_mp = q_data->format; > + > + return 0; > +} > + > +static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix, > + const struct fdp1_fmt *fmt) > +{ > + unsigned int i; > + > + /* Compute and clamp the stride and image size. */ > + for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) { > + unsigned int hsub = i > 0 ? fmt->hsub : 1; > + unsigned int vsub = i > 0 ? fmt->vsub : 1; > + /* From VSP : TODO: Confirm alignment limits for FDP1 */ > + unsigned int align = 128; > + unsigned int bpl; > + > + bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, > + pix->width / hsub * fmt->bpp[i] / 8, > + round_down(FDP1_MAX_STRIDE, align)); > + > + pix->plane_fmt[i].bytesperline = round_up(bpl, align); > + pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline > + * pix->height / vsub; > + > + memset(pix->plane_fmt[i].reserved, 0, > + sizeof(pix->plane_fmt[i].reserved)); > + } > + > + if (fmt->num_planes == 3) { > + /* The two chroma planes must have the same stride. */ > + pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; > + pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; > + > + memset(pix->plane_fmt[2].reserved, 0, > + sizeof(pix->plane_fmt[2].reserved)); > + } > +} > + > +static void fdp1_try_fmt_output(struct fdp1_ctx *ctx, > + const struct fdp1_fmt **fmtinfo, > + struct v4l2_pix_format_mplane *pix) > +{ > + const struct fdp1_fmt *fmt; > + unsigned int width; > + unsigned int height; > + > + /* Validate the pixel format to ensure the output queue supports it. */ > + fmt = fdp1_find_format(pix->pixelformat); > + if (!fmt || !(fmt->types & FDP1_OUTPUT)) > + fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); > + > + if (fmtinfo) > + *fmtinfo = fmt; > + > + pix->pixelformat = fmt->fourcc; > + pix->num_planes = fmt->num_planes; > + > + /* > + * Progressive video and all interlaced field orders are acceptable. > + * Default to V4L2_FIELD_INTERLACED. > + */ > + if (pix->field != V4L2_FIELD_NONE && > + pix->field != V4L2_FIELD_ALTERNATE && > + !V4L2_FIELD_HAS_BOTH(pix->field)) > + pix->field = V4L2_FIELD_INTERLACED; > + > + /* > + * The deinterlacer doesn't care about the colorspace, accept all values > + * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion > + * at the output of the deinterlacer supports a subset of encodings and > + * quantization methods and will only be available when the colorspace > + * allows it. > + */ > + if (pix->colorspace == V4L2_COLORSPACE_DEFAULT) > + pix->colorspace = V4L2_COLORSPACE_SMPTE170M; > + > + /* > + * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp > + * them to the supported frame size range. The height boundary are > + * related to the full frame, divide them by two when the format passes > + * fields in separate buffers. > + */ > + width = round_down(pix->width, fmt->hsub); > + pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W); > + > + height = round_down(pix->height, fmt->vsub); > + if (pix->field == V4L2_FIELD_ALTERNATE) > + pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2); > + else > + pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H); > + > + fdp1_compute_stride(pix, fmt); > +} > + > +static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx, > + const struct fdp1_fmt **fmtinfo, > + struct v4l2_pix_format_mplane *pix) > +{ > + struct fdp1_q_data *src_data = &ctx->out_q; > + enum v4l2_colorspace colorspace; > + enum v4l2_ycbcr_encoding ycbcr_enc; > + enum v4l2_quantization quantization; > + const struct fdp1_fmt *fmt; > + bool allow_rgb; > + > + /* > + * Validate the pixel format. We can only accept RGB output formats if > + * the input encoding and quantization are compatible with the format > + * conversions supported by the hardware. The supported combinations are > + * > + * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE > + * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE > + * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE > + */ > + colorspace = src_data->format.colorspace; > + > + ycbcr_enc = src_data->format.ycbcr_enc; > + if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) > + ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace); > + > + quantization = src_data->format.quantization; > + if (quantization == V4L2_QUANTIZATION_DEFAULT) > + quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace, > + ycbcr_enc); > + > + allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 || > + (ycbcr_enc == V4L2_YCBCR_ENC_709 && > + quantization == V4L2_QUANTIZATION_LIM_RANGE); > + > + fmt = fdp1_find_format(pix->pixelformat); > + if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt))) > + fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); > + > + if (fmtinfo) > + *fmtinfo = fmt; > + > + pix->pixelformat = fmt->fourcc; > + pix->num_planes = fmt->num_planes; > + pix->field = V4L2_FIELD_NONE; > + > + /* > + * The colorspace on the capture queue is copied from the output queue > + * as the hardware can't change the colorspace. It can convert YCbCr to > + * RGB though, in which case the encoding and quantization are set to > + * default values as anything else wouldn't make sense. > + */ > + pix->colorspace = src_data->format.colorspace; > + pix->xfer_func = src_data->format.xfer_func; > + > + if (fdp1_fmt_is_rgb(fmt)) { > + pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; > + pix->quantization = V4L2_QUANTIZATION_DEFAULT; > + } else { > + pix->ycbcr_enc = src_data->format.ycbcr_enc; > + pix->quantization = src_data->format.quantization; > + } > + > + /* > + * The frame width is identical to the output queue, and the height is > + * either doubled or identical depending on whether the output queue > + * field order contains one or two fields per frame. > + */ > + pix->width = src_data->format.width; > + if (src_data->format.field == V4L2_FIELD_ALTERNATE) > + pix->height = 2 * src_data->format.height; > + else > + pix->height = src_data->format.height; > + > + fdp1_compute_stride(pix, fmt); > +} > + > +static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f) > +{ > + struct fdp1_ctx *ctx = fh_to_ctx(priv); > + > + if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) > + fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp); > + else > + fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp); > + > + dprintk(ctx->fdp1, "Try %s format: %4s (0x%08x) %ux%u field %u\n", > + V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", > + (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, > + f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); > + > + return 0; > +} > + > +static void fdp1_set_format(struct fdp1_ctx *ctx, > + struct v4l2_pix_format_mplane *pix, > + enum v4l2_buf_type type) > +{ > + struct fdp1_q_data *q_data = get_q_data(ctx, type); > + const struct fdp1_fmt *fmtinfo; > + > + if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) > + fdp1_try_fmt_output(ctx, &fmtinfo, pix); > + else > + fdp1_try_fmt_capture(ctx, &fmtinfo, pix); > + > + q_data->fmt = fmtinfo; > + q_data->format = *pix; > + > + q_data->vsize = pix->height; > + if (pix->field != V4L2_FIELD_NONE) > + q_data->vsize /= 2; > + > + q_data->stride_y = pix->plane_fmt[0].bytesperline; > + q_data->stride_c = pix->plane_fmt[1].bytesperline; > + > + /* Adjust strides for interleaved buffers */ > + if (pix->field == V4L2_FIELD_INTERLACED || > + pix->field == V4L2_FIELD_INTERLACED_TB || > + pix->field == V4L2_FIELD_INTERLACED_BT) { > + q_data->stride_y *= 2; > + q_data->stride_c *= 2; > + } > + > + /* Propagate the format from the output node to the capture node. */ > + if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { > + struct fdp1_q_data *dst_data = &ctx->cap_q; > + > + /* > + * Copy the format, clear the per-plane bytes per line and image > + * size, override the field and double the height if needed. > + */ > + dst_data->format = q_data->format; > + memset(dst_data->format.plane_fmt, 0, > + sizeof(dst_data->format.plane_fmt)); > + > + dst_data->format.field = V4L2_FIELD_NONE; > + if (pix->field == V4L2_FIELD_ALTERNATE) > + dst_data->format.height *= 2; > + > + fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format); > + > + dst_data->vsize = dst_data->format.height; > + dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline; > + dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline; > + } > +} > + > +static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f) > +{ > + struct fdp1_ctx *ctx = fh_to_ctx(priv); > + struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx; > + struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type); > + > + if (vb2_is_busy(vq)) { > + v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__); > + return -EBUSY; > + } > + > + fdp1_set_format(ctx, &f->fmt.pix_mp, f->type); > + > + dprintk(ctx->fdp1, "Set %s format: %4s (0x%08x) %ux%u field %u\n", > + V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", > + (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, > + f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); > + > + return 0; > +} > + > +static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl) > +{ > + struct fdp1_ctx *ctx = > + container_of(ctrl->handler, struct fdp1_ctx, hdl); > + struct fdp1_q_data *src_q_data = &ctx->out_q; > + > + switch (ctrl->id) { > + case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE: > + if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) > + ctrl->val = 2; > + else > + ctrl->val = 1; > + return 0; > + } > + > + return 1; > +} > + > +static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl) > +{ > + struct fdp1_ctx *ctx = > + container_of(ctrl->handler, struct fdp1_ctx, hdl); > + > + switch (ctrl->id) { > + case V4L2_CID_ALPHA_COMPONENT: > + ctx->alpha = ctrl->val; > + break; > + > + case V4L2_CID_DEINTERLACING_MODE: > + ctx->deint_mode = ctrl->val; > + break; > + } > + > + return 0; > +} > + > +static const struct v4l2_ctrl_ops fdp1_ctrl_ops = { > + .s_ctrl = fdp1_s_ctrl, > + .g_volatile_ctrl = fdp1_g_ctrl, > +}; > + > +static const char * const fdp1_ctrl_deint_menu[] = { > + "Progressive", > + "Adaptive 2D/3D", > + "Fixed 2D", > + "Fixed 3D", > + "Previous field", > + "Next field", > + NULL > +}; > + > +static const struct v4l2_ioctl_ops fdp1_ioctl_ops = { > + .vidioc_querycap = fdp1_vidioc_querycap, > + > + .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap, > + .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out, > + .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt, > + .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt, > + .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt, > + .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt, > + .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt, > + .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt, > + > + .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, > + .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, > + .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, > + .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, > + .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf, > + .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, > + .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, > + > + .vidioc_streamon = v4l2_m2m_ioctl_streamon, > + .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, > + > + .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, > + .vidioc_unsubscribe_event = v4l2_event_unsubscribe, > +}; > + > +/* > + * Queue operations > + */ > + > +static int fdp1_queue_setup(struct vb2_queue *vq, > + unsigned int *nbuffers, unsigned int *nplanes, > + unsigned int sizes[], > + struct device *alloc_ctxs[]) > +{ > + struct fdp1_ctx *ctx = vb2_get_drv_priv(vq); > + struct fdp1_q_data *q_data; > + unsigned int i; > + > + q_data = get_q_data(ctx, vq->type); > + > + if (*nplanes) { > + if (*nplanes > FDP1_MAX_PLANES) > + return -EINVAL; > + > + return 0; > + } > + > + *nplanes = q_data->format.num_planes; > + > + for (i = 0; i < *nplanes; i++) > + sizes[i] = q_data->format.plane_fmt[i].sizeimage; > + > + return 0; > +} > + > +static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data, > + struct vb2_v4l2_buffer *vbuf, > + unsigned int field_num) > +{ > + struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); > + struct fdp1_field_buffer *fbuf = &buf->fields[field_num]; > + unsigned int num_fields; > + unsigned int i; > + > + num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; > + > + fbuf->vb = vbuf; > + fbuf->last_field = (field_num + 1) == num_fields; > + > + for (i = 0; i < vbuf->vb2_buf.num_planes; ++i) > + fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i); > + > + switch (vbuf->field) { > + case V4L2_FIELD_INTERLACED: > + /* > + * Interlaced means bottom-top for 60Hz TV standards (NTSC) and > + * top-bottom for 50Hz. As TV standards are not applicable to > + * the mem-to-mem API, use the height as a heuristic. > + */ > + fbuf->field = (q_data->format.height < 576) == field_num > + ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; > + break; > + case V4L2_FIELD_INTERLACED_TB: > + case V4L2_FIELD_SEQ_TB: > + fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP; > + break; > + case V4L2_FIELD_INTERLACED_BT: > + case V4L2_FIELD_SEQ_BT: > + fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; > + break; > + default: > + fbuf->field = vbuf->field; > + break; > + } > + > + /* Buffer is completed */ > + if (!field_num) > + return; > + > + /* Adjust buffer addresses for second field */ > + switch (vbuf->field) { > + case V4L2_FIELD_INTERLACED: > + case V4L2_FIELD_INTERLACED_TB: > + case V4L2_FIELD_INTERLACED_BT: > + for (i = 0; i < vbuf->vb2_buf.num_planes; i++) > + fbuf->addrs[i] += > + (i == 0 ? q_data->stride_y : q_data->stride_c); > + break; > + case V4L2_FIELD_SEQ_TB: > + case V4L2_FIELD_SEQ_BT: > + for (i = 0; i < vbuf->vb2_buf.num_planes; i++) > + fbuf->addrs[i] += q_data->vsize * > + (i == 0 ? q_data->stride_y : q_data->stride_c); > + break; > + } > +} > + > +static int fdp1_buf_prepare(struct vb2_buffer *vb) > +{ > + struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); > + struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type); > + struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); > + struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); > + unsigned int i; > + > + if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) { > + bool field_valid = true; > + > + /* Validate the buffer field. */ > + switch (q_data->format.field) { > + case V4L2_FIELD_NONE: > + if (vbuf->field != V4L2_FIELD_NONE) > + field_valid = false; > + break; > + > + case V4L2_FIELD_ALTERNATE: > + if (vbuf->field != V4L2_FIELD_TOP && > + vbuf->field != V4L2_FIELD_BOTTOM) > + field_valid = false; > + break; > + > + case V4L2_FIELD_INTERLACED: > + case V4L2_FIELD_SEQ_TB: > + case V4L2_FIELD_SEQ_BT: > + case V4L2_FIELD_INTERLACED_TB: > + case V4L2_FIELD_INTERLACED_BT: > + if (vbuf->field != q_data->format.field) > + field_valid = false; > + break; > + } > + > + if (!field_valid) { > + dprintk(ctx->fdp1, > + "buffer field %u invalid for format field %u\n", > + vbuf->field, q_data->format.field); > + return -EINVAL; > + } > + } else { > + vbuf->field = V4L2_FIELD_NONE; > + } > + > + /* Validate the planes sizes. */ > + for (i = 0; i < q_data->format.num_planes; i++) { > + unsigned long size = q_data->format.plane_fmt[i].sizeimage; > + > + if (vb2_plane_size(vb, i) < size) { > + dprintk(ctx->fdp1, > + "data will not fit into plane [%u/%u] (%lu < %lu)\n", > + i, q_data->format.num_planes, > + vb2_plane_size(vb, i), size); > + return -EINVAL; > + } > + > + /* We have known size formats all around */ > + vb2_set_plane_payload(vb, i, size); > + } > + > + buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; > + for (i = 0; i < buf->num_fields; ++i) > + fdp1_buf_prepare_field(q_data, vbuf, i); > + > + return 0; > +} > + > +static void fdp1_buf_queue(struct vb2_buffer *vb) > +{ > + struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); > + struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); > + > + v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); > +} > + > +static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count) > +{ > + struct fdp1_ctx *ctx = vb2_get_drv_priv(q); > + struct fdp1_q_data *q_data = get_q_data(ctx, q->type); > + > + if (V4L2_TYPE_IS_OUTPUT(q->type)) { > + /* > + * Force our deint_mode when we are progressive, > + * ignoring any setting on the device from the user, > + * Otherwise, lock in the requested de-interlace mode. > + */ > + if (q_data->format.field == V4L2_FIELD_NONE) > + ctx->deint_mode = FDP1_PROGRESSIVE; > + > + if (ctx->deint_mode == FDP1_ADAPT2D3D) { > + u32 stride; > + dma_addr_t smsk_base; > + const u32 bpp = 2; /* bytes per pixel */ > + > + stride = round_up(q_data->format.width, 8); > + > + ctx->smsk_size = bpp * stride * q_data->vsize; > + > + ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev, > + ctx->smsk_size, &smsk_base, GFP_KERNEL); > + > + if (ctx->smsk_cpu == NULL) { > + dprintk(ctx->fdp1, "Failed to alloc smsk\n"); > + return -ENOMEM; > + } > + > + ctx->smsk_addr[0] = smsk_base; > + ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2); > + } > + } > + > + return 0; > +} > + > +static void fdp1_stop_streaming(struct vb2_queue *q) > +{ > + struct fdp1_ctx *ctx = vb2_get_drv_priv(q); > + struct vb2_v4l2_buffer *vbuf; > + unsigned long flags; > + > + while (1) { > + if (V4L2_TYPE_IS_OUTPUT(q->type)) > + vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); > + else > + vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); > + if (vbuf == NULL) > + break; > + spin_lock_irqsave(&ctx->fdp1->irqlock, flags); > + v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR); > + spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); > + } > + > + /* Empty Output queues */ > + if (V4L2_TYPE_IS_OUTPUT(q->type)) { > + /* Empty our internal queues */ > + struct fdp1_field_buffer *fbuf; > + > + /* Free any queued buffers */ > + fbuf = fdp1_dequeue_field(ctx); > + while (fbuf != NULL) { > + fdp1_field_complete(ctx, fbuf); > + fbuf = fdp1_dequeue_field(ctx); > + } > + > + /* Free smsk_data */ > + if (ctx->smsk_cpu) { > + dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size, > + ctx->smsk_cpu, ctx->smsk_addr[0]); > + ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0; > + ctx->smsk_cpu = NULL; > + } > + > + WARN(!list_empty(&ctx->fields_queue), > + "Buffer queue not empty"); > + } else { > + /* Empty Capture queues (Jobs) */ > + struct fdp1_job *job; > + > + job = get_queued_job(ctx->fdp1); > + while (job) { > + if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) > + fdp1_field_complete(ctx, job->previous); > + else > + fdp1_field_complete(ctx, job->active); > + > + v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR); > + job->dst = NULL; > + > + job = get_queued_job(ctx->fdp1); > + } > + > + /* Free any held buffer in the ctx */ > + fdp1_field_complete(ctx, ctx->previous); > + > + WARN(!list_empty(&ctx->fdp1->queued_job_list), > + "Queued Job List not empty"); > + > + WARN(!list_empty(&ctx->fdp1->hw_job_list), > + "HW Job list not empty"); > + } > +} > + > +static struct vb2_ops fdp1_qops = { > + .queue_setup = fdp1_queue_setup, > + .buf_prepare = fdp1_buf_prepare, > + .buf_queue = fdp1_buf_queue, > + .start_streaming = fdp1_start_streaming, > + .stop_streaming = fdp1_stop_streaming, > + .wait_prepare = vb2_ops_wait_prepare, > + .wait_finish = vb2_ops_wait_finish, > +}; > + > +static int queue_init(void *priv, struct vb2_queue *src_vq, > + struct vb2_queue *dst_vq) > +{ > + struct fdp1_ctx *ctx = priv; > + int ret; > + > + src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; > + src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; > + src_vq->drv_priv = ctx; > + src_vq->buf_struct_size = sizeof(struct fdp1_buffer); > + src_vq->ops = &fdp1_qops; > + src_vq->mem_ops = &vb2_dma_contig_memops; > + src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; > + src_vq->lock = &ctx->fdp1->dev_mutex; > + src_vq->dev = ctx->fdp1->dev; > + > + ret = vb2_queue_init(src_vq); > + if (ret) > + return ret; > + > + dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; > + dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; > + dst_vq->drv_priv = ctx; > + dst_vq->buf_struct_size = sizeof(struct fdp1_buffer); > + dst_vq->ops = &fdp1_qops; > + dst_vq->mem_ops = &vb2_dma_contig_memops; > + dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; > + dst_vq->lock = &ctx->fdp1->dev_mutex; > + dst_vq->dev = ctx->fdp1->dev; > + > + return vb2_queue_init(dst_vq); > +} > + > +/* > + * File operations > + */ > +static int fdp1_open(struct file *file) > +{ > + struct fdp1_dev *fdp1 = video_drvdata(file); > + struct v4l2_pix_format_mplane format; > + struct fdp1_ctx *ctx = NULL; > + struct v4l2_ctrl *ctrl; > + int ret = 0; > + > + if (mutex_lock_interruptible(&fdp1->dev_mutex)) > + return -ERESTARTSYS; > + > + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); > + if (!ctx) { > + ret = -ENOMEM; > + goto done; > + } > + > + v4l2_fh_init(&ctx->fh, video_devdata(file)); > + file->private_data = &ctx->fh; > + ctx->fdp1 = fdp1; > + > + /* Initialise Queues */ > + INIT_LIST_HEAD(&ctx->fields_queue); > + > + ctx->translen = 1; > + ctx->sequence = 0; > + > + /* Initialise controls */ > + > + v4l2_ctrl_handler_init(&ctx->hdl, 3); > + v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops, > + V4L2_CID_DEINTERLACING_MODE, > + FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D, > + fdp1_ctrl_deint_menu); > + > + ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, > + V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1); > + if (ctrl) > + ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; > + > + v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, > + V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255); > + > + if (ctx->hdl.error) { > + ret = ctx->hdl.error; > + v4l2_ctrl_handler_free(&ctx->hdl); > + goto done; > + } > + > + ctx->fh.ctrl_handler = &ctx->hdl; > + v4l2_ctrl_handler_setup(&ctx->hdl); > + > + /* Configure default parameters. */ > + memset(&format, 0, sizeof(format)); > + fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); > + > + ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init); > + > + if (IS_ERR(ctx->fh.m2m_ctx)) { > + ret = PTR_ERR(ctx->fh.m2m_ctx); > + > + v4l2_ctrl_handler_free(&ctx->hdl); > + kfree(ctx); > + goto done; > + } > + > + /* Perform any power management required */ > + pm_runtime_get_sync(fdp1->dev); > + > + v4l2_fh_add(&ctx->fh); > + > + dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n", > + ctx, ctx->fh.m2m_ctx); > + > +done: > + mutex_unlock(&fdp1->dev_mutex); > + return ret; > +} > + > +static int fdp1_release(struct file *file) > +{ > + struct fdp1_dev *fdp1 = video_drvdata(file); > + struct fdp1_ctx *ctx = fh_to_ctx(file->private_data); > + > + dprintk(fdp1, "Releasing instance %p\n", ctx); > + > + v4l2_fh_del(&ctx->fh); > + v4l2_fh_exit(&ctx->fh); > + v4l2_ctrl_handler_free(&ctx->hdl); > + mutex_lock(&fdp1->dev_mutex); > + v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); > + mutex_unlock(&fdp1->dev_mutex); > + kfree(ctx); > + > + pm_runtime_put(fdp1->dev); > + > + return 0; > +} > + > +static const struct v4l2_file_operations fdp1_fops = { > + .owner = THIS_MODULE, > + .open = fdp1_open, > + .release = fdp1_release, > + .poll = v4l2_m2m_fop_poll, > + .unlocked_ioctl = video_ioctl2, > + .mmap = v4l2_m2m_fop_mmap, > +}; > + > +static const struct video_device fdp1_videodev = { > + .name = DRIVER_NAME, > + .vfl_dir = VFL_DIR_M2M, > + .fops = &fdp1_fops, > + .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING, > + .ioctl_ops = &fdp1_ioctl_ops, > + .minor = -1, > + .release = video_device_release_empty, > +}; > + > +static const struct v4l2_m2m_ops m2m_ops = { > + .device_run = fdp1_m2m_device_run, > + .job_ready = fdp1_m2m_job_ready, > + .job_abort = fdp1_m2m_job_abort, > +}; > + > +static irqreturn_t fdp1_irq_handler(int irq, void *dev_id) > +{ > + struct fdp1_dev *fdp1 = dev_id; > + u32 int_status; > + u32 ctl_status; > + u32 vint_cnt; > + u32 cycles; > + > + int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA); > + cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT); > + ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS); > + vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >> > + FD1_CTL_STATUS_VINT_CNT_SHIFT; > + > + /* Clear interrupts */ > + fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA); > + > + if (debug >= 2) { > + dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status, > + int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]", > + int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]", > + int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]"); > + > + dprintk(fdp1, "CycleStatus = %d (%dms)\n", > + cycles, cycles/(fdp1->clk_rate/1000)); > + > + dprintk(fdp1, > + "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n", > + ctl_status, vint_cnt, > + ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "", > + ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "", > + ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "", > + ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : ""); > + dprintk(fdp1, "***********************************\n"); > + } > + > + /* Spurious interrupt */ > + if (!(FD1_CTL_IRQ_MASK & int_status)) > + return IRQ_NONE; > + > + /* Work completed, release the frame */ > + if (FD1_CTL_IRQ_VERE & int_status) > + device_frame_end(fdp1, VB2_BUF_STATE_ERROR); > + else if (FD1_CTL_IRQ_FREE & int_status) > + device_frame_end(fdp1, VB2_BUF_STATE_DONE); > + > + return IRQ_HANDLED; > +} > + > +static int fdp1_probe(struct platform_device *pdev) > +{ > + struct fdp1_dev *fdp1; > + struct video_device *vfd; > + struct device_node *fcp_node; > + struct resource *res; > + struct clk *clk; > + unsigned int i; > + > + int ret; > + int hw_version; > + > + fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL); > + if (!fdp1) > + return -ENOMEM; > + > + INIT_LIST_HEAD(&fdp1->free_job_list); > + INIT_LIST_HEAD(&fdp1->queued_job_list); > + INIT_LIST_HEAD(&fdp1->hw_job_list); > + > + /* Initialise the jobs on the free list */ > + for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++) > + list_add(&fdp1->jobs[i].list, &fdp1->free_job_list); > + > + mutex_init(&fdp1->dev_mutex); > + > + spin_lock_init(&fdp1->irqlock); > + spin_lock_init(&fdp1->device_process_lock); > + fdp1->dev = &pdev->dev; > + platform_set_drvdata(pdev, fdp1); > + > + /* Memory-mapped registers */ > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + fdp1->regs = devm_ioremap_resource(&pdev->dev, res); > + if (IS_ERR(fdp1->regs)) > + return PTR_ERR(fdp1->regs); > + > + /* Interrupt service routine registration */ > + fdp1->irq = ret = platform_get_irq(pdev, 0); > + if (ret < 0) { > + dev_err(&pdev->dev, "cannot find IRQ\n"); > + return ret; > + } > + > + ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0, > + dev_name(&pdev->dev), fdp1); > + if (ret) { > + dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq); > + return ret; > + } > + > + /* FCP */ > + fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0); > + if (fcp_node) { > + fdp1->fcp = rcar_fcp_get(fcp_node); > + of_node_put(fcp_node); > + if (IS_ERR(fdp1->fcp)) { > + dev_err(&pdev->dev, "FCP not found (%ld)\n", > + PTR_ERR(fdp1->fcp)); > + return PTR_ERR(fdp1->fcp); > + } > + } > + > + /* Determine our clock rate */ > + clk = clk_get(&pdev->dev, NULL); > + if (IS_ERR(clk)) > + return PTR_ERR(clk); > + > + fdp1->clk_rate = clk_get_rate(clk); > + clk_put(clk); > + > + /* V4L2 device registration */ > + ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev); > + if (ret) { > + v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); > + return ret; > + } > + > + /* M2M registration */ > + fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops); > + if (IS_ERR(fdp1->m2m_dev)) { > + v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n"); > + ret = PTR_ERR(fdp1->m2m_dev); > + goto unreg_dev; > + } > + > + /* Video registration */ > + fdp1->vfd = fdp1_videodev; > + vfd = &fdp1->vfd; > + vfd->lock = &fdp1->dev_mutex; > + vfd->v4l2_dev = &fdp1->v4l2_dev; > + video_set_drvdata(vfd, fdp1); > + strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name)); > + > + ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0); > + if (ret) { > + v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); > + goto release_m2m; > + } > + > + v4l2_info(&fdp1->v4l2_dev, > + "Device registered as /dev/video%d\n", vfd->num); > + > + /* Power up the cells to read HW */ > + pm_runtime_enable(&pdev->dev); > + pm_runtime_get_sync(fdp1->dev); > + > + hw_version = fdp1_read(fdp1, FD1_IP_INTDATA); > + switch (hw_version) { > + case FD1_IP_H3: > + dprintk(fdp1, "FDP1 Version R-Car H3\n"); > + break; > + case FD1_IP_M3W: > + dprintk(fdp1, "FDP1 Version R-Car M3-W\n"); > + break; > + default: > + dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n", > + hw_version); > + } > + > + /* Allow the hw to sleep until an open call puts it to use */ > + pm_runtime_put(fdp1->dev); > + > + return 0; > + > +release_m2m: > + v4l2_m2m_release(fdp1->m2m_dev); > + > +unreg_dev: > + v4l2_device_unregister(&fdp1->v4l2_dev); > + > + return ret; > +} > + > +static int fdp1_remove(struct platform_device *pdev) > +{ > + struct fdp1_dev *fdp1 = platform_get_drvdata(pdev); > + > + v4l2_m2m_release(fdp1->m2m_dev); > + video_unregister_device(&fdp1->vfd); > + v4l2_device_unregister(&fdp1->v4l2_dev); > + pm_runtime_disable(&pdev->dev); > + > + return 0; > +} > + > +static int fdp1_pm_runtime_suspend(struct device *dev) > +{ > + struct fdp1_dev *fdp1 = dev_get_drvdata(dev); > + > + rcar_fcp_disable(fdp1->fcp); > + > + return 0; > +} > + > +static int fdp1_pm_runtime_resume(struct device *dev) > +{ > + struct fdp1_dev *fdp1 = dev_get_drvdata(dev); > + > + /* Program in the static LUTs */ > + fdp1_set_lut(fdp1); > + > + return rcar_fcp_enable(fdp1->fcp); > +} > + > +static const struct dev_pm_ops fdp1_pm_ops = { > + SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend, > + fdp1_pm_runtime_resume, > + NULL) > +}; > + > +static const struct of_device_id fdp1_dt_ids[] = { > + { .compatible = "renesas,fdp1" }, > + { }, > +}; > +MODULE_DEVICE_TABLE(of, fdp1_dt_ids); > + > +static struct platform_driver fdp1_pdrv = { > + .probe = fdp1_probe, > + .remove = fdp1_remove, > + .driver = { > + .name = DRIVER_NAME, > + .of_match_table = fdp1_dt_ids, > + .pm = &fdp1_pm_ops, > + }, > +}; > + > +module_platform_driver(fdp1_pdrv); > + > +MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver"); > +MODULE_AUTHOR("Kieran Bingham <kieran@xxxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > +MODULE_ALIAS("platform:" DRIVER_NAME); > -- To unsubscribe from this list: send the line "unsubscribe linux-media" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html