Em Wed, 6 Jul 2016 16:06:44 -0700 Steve Longerbeam <slongerbeam@xxxxxxxxx> escreveu: > This patch implements complete image conversion support to ipu-ic, > with tiling to support scaling to and from images up to 4096x4096. > Image rotation is also supported. > > The internal API is subsystem agnostic (no V4L2 dependency except > for the use of V4L2 fourcc pixel formats). > > Callers prepare for image conversion by calling > ipu_image_convert_prepare(), which initializes the parameters of > the conversion. The caller passes in the ipu_ic task to use for > the conversion, the input and output image formats, a rotation mode, > and a completion callback and completion context pointer: > > struct image_converter_ctx * > ipu_image_convert_prepare(struct ipu_ic *ic, > struct ipu_image *in, struct ipu_image *out, > enum ipu_rotate_mode rot_mode, > image_converter_cb_t complete, > void *complete_context); > > The caller is given a new conversion context that must be passed to > the further APIs: > > struct image_converter_run * > ipu_image_convert_run(struct image_converter_ctx *ctx, > dma_addr_t in_phys, dma_addr_t out_phys); > > This queues a new image conversion request to a run queue, and > starts the conversion immediately if the run queue is empty. Only > the physaddr's of the input and output image buffers are needed, > since the conversion context was created previously with > ipu_image_convert_prepare(). Returns a new run object pointer. When > the conversion completes, the run pointer is returned to the > completion callback. > > void image_convert_abort(struct image_converter_ctx *ctx); > > This will abort any active or pending conversions for this context. > Any currently active or pending runs belonging to this context are > returned via the completion callback with an error status. > > void ipu_image_convert_unprepare(struct image_converter_ctx *ctx); > > Unprepares the conversion context. Any active or pending runs will > be aborted by calling image_convert_abort(). > --- > drivers/gpu/ipu-v3/ipu-ic.c | 1691 ++++++++++++++++++++++++++++++++++++++++++- > include/video/imx-ipu-v3.h | 57 +- > 2 files changed, 1736 insertions(+), 12 deletions(-) > > diff --git a/drivers/gpu/ipu-v3/ipu-ic.c b/drivers/gpu/ipu-v3/ipu-ic.c > index 5329bfe..f6a1125 100644 > --- a/drivers/gpu/ipu-v3/ipu-ic.c > +++ b/drivers/gpu/ipu-v3/ipu-ic.c > @@ -17,6 +17,8 @@ > #include <linux/bitrev.h> > #include <linux/io.h> > #include <linux/err.h> > +#include <linux/interrupt.h> > +#include <linux/dma-mapping.h> > #include "ipu-prv.h" > > /* IC Register Offsets */ > @@ -82,6 +84,40 @@ > #define IC_IDMAC_3_PP_WIDTH_MASK (0x3ff << 20) > #define IC_IDMAC_3_PP_WIDTH_OFFSET 20 > > +/* > + * The IC Resizer has a restriction that the output frame from the > + * resizer must be 1024 or less in both width (pixels) and height > + * (lines). > + * > + * The image conversion support attempts to split up a conversion when > + * the desired output (converted) frame resolution exceeds the IC resizer > + * limit of 1024 in either dimension. > + * > + * If either dimension of the output frame exceeds the limit, the > + * dimension is split into 1, 2, or 4 equal stripes, for a maximum > + * of 4*4 or 16 tiles. A conversion is then carried out for each > + * tile (but taking care to pass the full frame stride length to > + * the DMA channel's parameter memory!). IDMA double-buffering is used > + * to convert each tile back-to-back when possible (see note below > + * when double_buffering boolean is set). > + * > + * Note that the input frame must be split up into the same number > + * of tiles as the output frame. > + */ > +#define MAX_STRIPES_W 4 > +#define MAX_STRIPES_H 4 > +#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) > + > +#define MIN_W 128 > +#define MIN_H 128 > +#define MAX_W 4096 > +#define MAX_H 4096 > + > +enum image_convert_type { > + IMAGE_CONVERT_IN = 0, > + IMAGE_CONVERT_OUT, > +}; > + > struct ic_task_regoffs { > u32 rsc; > u32 tpmem_csc[2]; > @@ -96,6 +132,16 @@ struct ic_task_bitfields { > u32 ic_cmb_galpha_bit; > }; > > +struct ic_task_channels { > + int in; > + int out; > + int rot_in; > + int rot_out; > + int vdi_in_p; > + int vdi_in; > + int vdi_in_n; > +}; > + > static const struct ic_task_regoffs ic_task_reg[IC_NUM_TASKS] = { > [IC_TASK_ENCODER] = { > .rsc = IC_PRP_ENC_RSC, > @@ -138,12 +184,159 @@ static const struct ic_task_bitfields ic_task_bit[IC_NUM_TASKS] = { > }, > }; > > +static const struct ic_task_channels ic_task_ch[IC_NUM_TASKS] = { > + [IC_TASK_ENCODER] = { > + .out = IPUV3_CHANNEL_IC_PRP_ENC_MEM, > + .rot_in = IPUV3_CHANNEL_MEM_ROT_ENC, > + .rot_out = IPUV3_CHANNEL_ROT_ENC_MEM, > + }, > + [IC_TASK_VIEWFINDER] = { > + .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, > + .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, > + .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, > + .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, > + .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_P, > + .vdi_in = IPUV3_CHANNEL_MEM_VDI, > + .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_N, > + }, > + [IC_TASK_POST_PROCESSOR] = { > + .in = IPUV3_CHANNEL_MEM_IC_PP, > + .out = IPUV3_CHANNEL_IC_PP_MEM, > + .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, > + .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, > + }, > +}; > + > +struct ipu_ic_dma_buf { > + void *virt; > + dma_addr_t phys; > + unsigned long len; > +}; > + > +/* dimensions of one tile */ > +struct ipu_ic_tile { > + unsigned int width; > + unsigned int height; > + /* size and strides are in bytes */ > + unsigned int size; > + unsigned int stride; > + unsigned int rot_stride; > +}; > + > +struct ipu_ic_tile_off { > + /* start Y or packed offset of this tile */ > + u32 offset; > + /* offset from start to tile in U plane, for planar formats */ > + u32 u_off; > + /* offset from start to tile in V plane, for planar formats */ > + u32 v_off; > +}; > + > +struct ipu_ic_pixfmt { > + char *name; > + u32 fourcc; /* V4L2 fourcc */ > + int bpp; /* total bpp */ > + int y_depth; /* depth of Y plane for planar formats */ > + int uv_width_dec; /* decimation in width for U/V planes */ > + int uv_height_dec; /* decimation in height for U/V planes */ > + bool uv_swapped; /* U and V planes are swapped */ > + bool uv_packed; /* partial planar (U and V in same plane) */ > +}; > + > +struct ipu_ic_image { > + struct ipu_image base; > + enum image_convert_type type; > + > + const struct ipu_ic_pixfmt *fmt; > + unsigned int stride; > + > + /* # of rows (horizontal stripes) if dest height is > 1024 */ > + unsigned int num_rows; > + /* # of columns (vertical stripes) if dest width is > 1024 */ > + unsigned int num_cols; > + > + struct ipu_ic_tile tile; > + struct ipu_ic_tile_off tile_off[MAX_TILES]; > +}; > + > +struct image_converter_ctx; > +struct image_converter; > struct ipu_ic_priv; > +struct ipu_ic; > + > +struct image_converter_run { > + struct image_converter_ctx *ctx; > + > + dma_addr_t in_phys; > + dma_addr_t out_phys; > + > + int status; > + > + struct list_head list; > +}; > + > +struct image_converter_ctx { > + struct image_converter *cvt; > + > + image_converter_cb_t complete; > + void *complete_context; > + > + /* Source/destination image data and rotation mode */ > + struct ipu_ic_image in; > + struct ipu_ic_image out; > + enum ipu_rotate_mode rot_mode; > + > + /* intermediate buffer for rotation */ > + struct ipu_ic_dma_buf rot_intermediate[2]; > + > + /* current buffer number for double buffering */ > + int cur_buf_num; > + > + bool aborting; > + struct completion aborted; > + > + /* can we use double-buffering for this conversion operation? */ > + bool double_buffering; > + /* num_rows * num_cols */ > + unsigned int num_tiles; > + /* next tile to process */ > + unsigned int next_tile; > + /* where to place converted tile in dest image */ > + unsigned int out_tile_map[MAX_TILES]; > + > + struct list_head list; > +}; > + > +struct image_converter { > + struct ipu_ic *ic; > + > + struct ipuv3_channel *in_chan; > + struct ipuv3_channel *out_chan; > + struct ipuv3_channel *rotation_in_chan; > + struct ipuv3_channel *rotation_out_chan; > + > + /* the IPU end-of-frame irqs */ > + int out_eof_irq; > + int rot_out_eof_irq; > + > + spinlock_t irqlock; > + > + /* list of convert contexts */ > + struct list_head ctx_list; > + /* queue of conversion runs */ > + struct list_head pending_q; > + /* queue of completed runs */ > + struct list_head done_q; > + > + /* the current conversion run */ > + struct image_converter_run *current_run; > +}; > > struct ipu_ic { > enum ipu_ic_task task; > const struct ic_task_regoffs *reg; > const struct ic_task_bitfields *bit; > + const struct ic_task_channels *ch; > > enum ipu_color_space in_cs, g_in_cs; > enum ipu_color_space out_cs; > @@ -151,6 +344,8 @@ struct ipu_ic { > bool rotation; > bool in_use; > > + struct image_converter cvt; > + > struct ipu_ic_priv *priv; > }; > > @@ -619,7 +814,7 @@ int ipu_ic_task_idma_init(struct ipu_ic *ic, struct ipuv3_channel *channel, > ipu_ic_write(ic, ic_idmac_2, IC_IDMAC_2); > ipu_ic_write(ic, ic_idmac_3, IC_IDMAC_3); > > - if (rot >= IPU_ROTATE_90_RIGHT) > + if (ipu_rot_mode_is_irt(rot)) > ic->rotation = true; > > unlock: > @@ -661,6 +856,1480 @@ static void ipu_irt_disable(struct ipu_ic *ic) > priv->irt_use_count = 0; > } > > +/* > + * Complete image conversion support follows > + */ > + > +static const struct ipu_ic_pixfmt ipu_ic_formats[] = { > + { > + .name = "RGB565", > + .fourcc = V4L2_PIX_FMT_RGB565, > + .bpp = 16, > + }, { > + .name = "RGB24", > + .fourcc = V4L2_PIX_FMT_RGB24, > + .bpp = 24, > + }, { > + .name = "BGR24", > + .fourcc = V4L2_PIX_FMT_BGR24, > + .bpp = 24, > + }, { > + .name = "RGB32", > + .fourcc = V4L2_PIX_FMT_RGB32, > + .bpp = 32, > + }, { > + .name = "BGR32", > + .fourcc = V4L2_PIX_FMT_BGR32, > + .bpp = 32, > + }, { > + .name = "4:2:2 packed, YUYV", > + .fourcc = V4L2_PIX_FMT_YUYV, > + .bpp = 16, > + .uv_width_dec = 2, > + .uv_height_dec = 1, > + }, { > + .name = "4:2:2 packed, UYVY", > + .fourcc = V4L2_PIX_FMT_UYVY, > + .bpp = 16, > + .uv_width_dec = 2, > + .uv_height_dec = 1, > + }, { > + .name = "4:2:0 planar, YUV", > + .fourcc = V4L2_PIX_FMT_YUV420, > + .bpp = 12, > + .y_depth = 8, > + .uv_width_dec = 2, > + .uv_height_dec = 2, > + }, { > + .name = "4:2:0 planar, YVU", > + .fourcc = V4L2_PIX_FMT_YVU420, > + .bpp = 12, > + .y_depth = 8, > + .uv_width_dec = 2, > + .uv_height_dec = 2, > + .uv_swapped = true, > + }, { > + .name = "4:2:0 partial planar, NV12", > + .fourcc = V4L2_PIX_FMT_NV12, > + .bpp = 12, > + .y_depth = 8, > + .uv_width_dec = 2, > + .uv_height_dec = 2, > + .uv_packed = true, > + }, { > + .name = "4:2:2 planar, YUV", > + .fourcc = V4L2_PIX_FMT_YUV422P, > + .bpp = 16, > + .y_depth = 8, > + .uv_width_dec = 2, > + .uv_height_dec = 1, > + }, { > + .name = "4:2:2 partial planar, NV16", > + .fourcc = V4L2_PIX_FMT_NV16, > + .bpp = 16, > + .y_depth = 8, > + .uv_width_dec = 2, > + .uv_height_dec = 1, > + .uv_packed = true, > + }, > +}; > + > +static const struct ipu_ic_pixfmt *ipu_ic_get_format(u32 fourcc) > +{ > + const struct ipu_ic_pixfmt *ret = NULL; > + unsigned int i; > + > + for (i = 0; i < ARRAY_SIZE(ipu_ic_formats); i++) { > + if (ipu_ic_formats[i].fourcc == fourcc) { > + ret = &ipu_ic_formats[i]; > + break; > + } > + } > + > + return ret; > +} > + > +static void ipu_ic_dump_format(struct image_converter_ctx *ctx, > + struct ipu_ic_image *ic_image) > +{ > + struct ipu_ic_priv *priv = ctx->cvt->ic->priv; > + > + dev_dbg(priv->ipu->dev, > + "ctx %p: %s format: %dx%d (%dx%d tiles of size %dx%d), %c%c%c%c\n", > + ctx, > + ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", > + ic_image->base.pix.width, ic_image->base.pix.height, > + ic_image->num_cols, ic_image->num_rows, > + ic_image->tile.width, ic_image->tile.height, > + ic_image->fmt->fourcc & 0xff, > + (ic_image->fmt->fourcc >> 8) & 0xff, > + (ic_image->fmt->fourcc >> 16) & 0xff, > + (ic_image->fmt->fourcc >> 24) & 0xff); > +} > + > +int ipu_image_convert_enum_format(int index, const char **desc, u32 *fourcc) > +{ > + const struct ipu_ic_pixfmt *fmt; > + > + if (index >= (int)ARRAY_SIZE(ipu_ic_formats)) > + return -EINVAL; > + > + /* Format found */ > + fmt = &ipu_ic_formats[index]; > + *desc = fmt->name; > + *fourcc = fmt->fourcc; > + return 0; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); > + > +static void ipu_ic_free_dma_buf(struct ipu_ic_priv *priv, > + struct ipu_ic_dma_buf *buf) > +{ > + if (buf->virt) > + dma_free_coherent(priv->ipu->dev, > + buf->len, buf->virt, buf->phys); > + buf->virt = NULL; > + buf->phys = 0; > +} > + > +static int ipu_ic_alloc_dma_buf(struct ipu_ic_priv *priv, > + struct ipu_ic_dma_buf *buf, > + int size) > +{ > + unsigned long newlen = PAGE_ALIGN(size); > + > + if (buf->virt) { > + if (buf->len == newlen) > + return 0; > + ipu_ic_free_dma_buf(priv, buf); > + } > + > + buf->len = newlen; > + buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, > + GFP_DMA | GFP_KERNEL); > + if (!buf->virt) { > + dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); > + return -ENOMEM; > + } > + > + return 0; > +} > + > +static inline int ipu_ic_num_stripes(int dim) > +{ > + if (dim <= 1024) > + return 1; > + else if (dim <= 2048) > + return 2; > + else > + return 4; > +} > + > +static void ipu_ic_calc_tile_dimensions(struct image_converter_ctx *ctx, > + struct ipu_ic_image *image) > +{ > + struct ipu_ic_tile *tile = &image->tile; > + > + tile->height = image->base.pix.height / image->num_rows; > + tile->width = image->base.pix.width / image->num_cols; > + tile->size = ((tile->height * image->fmt->bpp) >> 3) * tile->width; > + > + if (image->fmt->y_depth) { > + tile->stride = (image->fmt->y_depth * tile->width) >> 3; > + tile->rot_stride = (image->fmt->y_depth * tile->height) >> 3; > + } else { > + tile->stride = (image->fmt->bpp * tile->width) >> 3; > + tile->rot_stride = (image->fmt->bpp * tile->height) >> 3; > + } > +} > + > +/* > + * Use the rotation transformation to find the tile coordinates > + * (row, col) of a tile in the destination frame that corresponds > + * to the given tile coordinates of a source frame. The destination > + * coordinate is then converted to a tile index. > + */ > +static int ipu_ic_transform_tile_index(struct image_converter_ctx *ctx, > + int src_row, int src_col) > +{ We don't do image rotation in software inside the Kernel! This is something that should be done either by some hardware block or in userspace. > + struct ipu_ic_priv *priv = ctx->cvt->ic->priv; > + struct ipu_ic_image *s_image = &ctx->in; > + struct ipu_ic_image *d_image = &ctx->out; > + int cos, sin, dst_row, dst_col; > + > + /* with no rotation it's a 1:1 mapping */ > + if (ctx->rot_mode == IPU_ROTATE_NONE) > + return src_row * s_image->num_cols + src_col; > + > + if (ctx->rot_mode & IPU_ROT_BIT_90) { > + cos = 0; > + sin = 1; > + } else { > + cos = 1; > + sin = 0; > + } > + > + /* > + * before doing the transform, first we have to translate > + * source row,col for an origin in the center of s_image > + */ > + src_row *= 2; > + src_col *= 2; > + src_row -= s_image->num_rows - 1; > + src_col -= s_image->num_cols - 1; > + > + /* do the rotation transform */ > + dst_col = src_col * cos - src_row * sin; > + dst_row = src_col * sin + src_row * cos; > + > + /* apply flip */ > + if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) > + dst_col = -dst_col; > + if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) > + dst_row = -dst_row; > + > + dev_dbg(priv->ipu->dev, "ctx %p: [%d,%d] --> [%d,%d]\n", > + ctx, src_col, src_row, dst_col, dst_row); > + > + /* > + * finally translate dest row,col using an origin in upper > + * left of d_image > + */ > + dst_row += d_image->num_rows - 1; > + dst_col += d_image->num_cols - 1; > + dst_row /= 2; > + dst_col /= 2; > + > + return dst_row * d_image->num_cols + dst_col; > +} > + > +/* > + * Fill the out_tile_map[] with transformed destination tile indeces. > + */ > +static void ipu_ic_calc_out_tile_map(struct image_converter_ctx *ctx) > +{ > + struct ipu_ic_image *s_image = &ctx->in; > + unsigned int row, col, tile = 0; > + > + for (row = 0; row < s_image->num_rows; row++) { > + for (col = 0; col < s_image->num_cols; col++) { > + ctx->out_tile_map[tile] = > + ipu_ic_transform_tile_index(ctx, row, col); > + tile++; > + } > + } > +} > + > +static void ipu_ic_calc_tile_offsets_planar(struct image_converter_ctx *ctx, > + struct ipu_ic_image *image) > +{ We also don't do image conversions inside the Kernel. Same applies to other similar codes on this patch. > + struct ipu_ic_priv *priv = ctx->cvt->ic->priv; > + const struct ipu_ic_pixfmt *fmt = image->fmt; > + unsigned int row, col, tile = 0; > + u32 H, w, h, y_depth, y_stride, uv_stride; > + u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; > + u32 y_row_off, y_col_off, y_off; > + u32 y_size, uv_size; > + > + /* setup some convenience vars */ > + H = image->base.pix.height; > + w = image->tile.width; > + h = image->tile.height; > + > + y_depth = fmt->y_depth; > + y_stride = image->stride; > + uv_stride = y_stride / fmt->uv_width_dec; > + if (fmt->uv_packed) > + uv_stride *= 2; > + > + y_size = H * y_stride; > + uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); > + > + for (row = 0; row < image->num_rows; row++) { > + y_row_off = row * h * y_stride; > + uv_row_off = (row * h * uv_stride) / fmt->uv_height_dec; > + > + for (col = 0; col < image->num_cols; col++) { > + y_col_off = (col * w * y_depth) >> 3; > + uv_col_off = y_col_off / fmt->uv_width_dec; > + if (fmt->uv_packed) > + uv_col_off *= 2; > + > + y_off = y_row_off + y_col_off; > + uv_off = uv_row_off + uv_col_off; > + > + u_off = y_size - y_off + uv_off; > + v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; > + if (fmt->uv_swapped) { > + tmp = u_off; > + u_off = v_off; > + v_off = tmp; > + } > + > + image->tile_off[tile].offset = y_off; > + image->tile_off[tile].u_off = u_off; > + image->tile_off[tile++].v_off = v_off; > + > + dev_dbg(priv->ipu->dev, > + "ctx %p: %s@[%d,%d]: y_off %08x, u_off %08x, v_off %08x\n", > + ctx, image->type == IMAGE_CONVERT_IN ? > + "Input" : "Output", row, col, > + y_off, u_off, v_off); > + } > + } > +} > + > +static void ipu_ic_calc_tile_offsets_packed(struct image_converter_ctx *ctx, > + struct ipu_ic_image *image) > +{ > + struct ipu_ic_priv *priv = ctx->cvt->ic->priv; > + const struct ipu_ic_pixfmt *fmt = image->fmt; > + unsigned int row, col, tile = 0; > + u32 w, h, bpp, stride; > + u32 row_off, col_off; > + > + /* setup some convenience vars */ > + w = image->tile.width; > + h = image->tile.height; > + stride = image->stride; > + bpp = fmt->bpp; > + > + for (row = 0; row < image->num_rows; row++) { > + row_off = row * h * stride; > + > + for (col = 0; col < image->num_cols; col++) { > + col_off = (col * w * bpp) >> 3; > + > + image->tile_off[tile].offset = row_off + col_off; > + image->tile_off[tile].u_off = 0; > + image->tile_off[tile++].v_off = 0; > + > + dev_dbg(priv->ipu->dev, > + "ctx %p: %s@[%d,%d]: phys %08x\n", ctx, > + image->type == IMAGE_CONVERT_IN ? > + "Input" : "Output", row, col, > + row_off + col_off); > + } > + } > +} > + > +static void ipu_ic_calc_tile_offsets(struct image_converter_ctx *ctx, > + struct ipu_ic_image *image) > +{ > + memset(image->tile_off, 0, sizeof(image->tile_off)); > + > + if (image->fmt->y_depth) > + ipu_ic_calc_tile_offsets_planar(ctx, image); > + else > + ipu_ic_calc_tile_offsets_packed(ctx, image); > +} > + > +/* > + * return the number of runs in given queue (pending_q or done_q) > + * for this context. hold irqlock when calling. > + */ > +static int ipu_ic_get_run_count(struct image_converter_ctx *ctx, > + struct list_head *q) > +{ > + struct image_converter_run *run; > + int count = 0; > + > + list_for_each_entry(run, q, list) { > + if (run->ctx == ctx) > + count++; > + } > + > + return count; > +} > + > +/* hold irqlock when calling */ > +static void ipu_ic_convert_stop(struct image_converter_run *run) > +{ > + struct image_converter_ctx *ctx = run->ctx; > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + > + dev_dbg(priv->ipu->dev, "%s: stopping ctx %p run %p\n", > + __func__, ctx, run); > + > + /* disable IC tasks and the channels */ > + ipu_ic_task_disable(cvt->ic); > + ipu_idmac_disable_channel(cvt->in_chan); > + ipu_idmac_disable_channel(cvt->out_chan); > + > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + ipu_idmac_disable_channel(cvt->rotation_in_chan); > + ipu_idmac_disable_channel(cvt->rotation_out_chan); > + ipu_idmac_unlink(cvt->out_chan, cvt->rotation_in_chan); > + } > + > + ipu_ic_disable(cvt->ic); > +} > + > +/* hold irqlock when calling */ > +static void init_idmac_channel(struct image_converter_ctx *ctx, > + struct ipuv3_channel *channel, > + struct ipu_ic_image *image, > + enum ipu_rotate_mode rot_mode, > + bool rot_swap_width_height) > +{ > + struct image_converter *cvt = ctx->cvt; > + unsigned int burst_size; > + u32 width, height, stride; > + dma_addr_t addr0, addr1 = 0; > + struct ipu_image tile_image; > + unsigned int tile_idx[2]; > + > + if (image->type == IMAGE_CONVERT_OUT) { > + tile_idx[0] = ctx->out_tile_map[0]; > + tile_idx[1] = ctx->out_tile_map[1]; > + } else { > + tile_idx[0] = 0; > + tile_idx[1] = 1; > + } > + > + if (rot_swap_width_height) { > + width = image->tile.height; > + height = image->tile.width; > + stride = image->tile.rot_stride; > + addr0 = ctx->rot_intermediate[0].phys; > + if (ctx->double_buffering) > + addr1 = ctx->rot_intermediate[1].phys; > + } else { > + width = image->tile.width; > + height = image->tile.height; > + stride = image->stride; > + addr0 = image->base.phys0 + > + image->tile_off[tile_idx[0]].offset; > + if (ctx->double_buffering) > + addr1 = image->base.phys0 + > + image->tile_off[tile_idx[1]].offset; > + } > + > + ipu_cpmem_zero(channel); > + > + memset(&tile_image, 0, sizeof(tile_image)); > + tile_image.pix.width = tile_image.rect.width = width; > + tile_image.pix.height = tile_image.rect.height = height; > + tile_image.pix.bytesperline = stride; > + tile_image.pix.pixelformat = image->fmt->fourcc; > + tile_image.phys0 = addr0; > + tile_image.phys1 = addr1; > + ipu_cpmem_set_image(channel, &tile_image); > + > + if (image->fmt->y_depth && !rot_swap_width_height) > + ipu_cpmem_set_uv_offset(channel, > + image->tile_off[tile_idx[0]].u_off, > + image->tile_off[tile_idx[0]].v_off); > + > + if (rot_mode) > + ipu_cpmem_set_rotation(channel, rot_mode); > + > + if (channel == cvt->rotation_in_chan || > + channel == cvt->rotation_out_chan) { > + burst_size = 8; > + ipu_cpmem_set_block_mode(channel); > + } else > + burst_size = (width % 16) ? 8 : 16; > + > + ipu_cpmem_set_burstsize(channel, burst_size); > + > + ipu_ic_task_idma_init(cvt->ic, channel, width, height, > + burst_size, rot_mode); > + > + ipu_cpmem_set_axi_id(channel, 1); > + > + ipu_idmac_set_double_buffer(channel, ctx->double_buffering); > +} > + > +/* hold irqlock when calling */ > +static int ipu_ic_convert_start(struct image_converter_run *run) > +{ > + struct image_converter_ctx *ctx = run->ctx; > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct ipu_ic_image *s_image = &ctx->in; > + struct ipu_ic_image *d_image = &ctx->out; > + enum ipu_color_space src_cs, dest_cs; > + unsigned int dest_width, dest_height; > + int ret; > + > + dev_dbg(priv->ipu->dev, "%s: starting ctx %p run %p\n", > + __func__, ctx, run); > + > + src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc); > + dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc); > + > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + /* swap width/height for resizer */ > + dest_width = d_image->tile.height; > + dest_height = d_image->tile.width; > + } else { > + dest_width = d_image->tile.width; > + dest_height = d_image->tile.height; > + } > + > + /* setup the IC resizer and CSC */ > + ret = ipu_ic_task_init(cvt->ic, > + s_image->tile.width, > + s_image->tile.height, > + dest_width, > + dest_height, > + src_cs, dest_cs); > + if (ret) { > + dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); > + return ret; > + } > + > + /* init the source MEM-->IC PP IDMAC channel */ > + init_idmac_channel(ctx, cvt->in_chan, s_image, > + IPU_ROTATE_NONE, false); > + > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + /* init the IC PP-->MEM IDMAC channel */ > + init_idmac_channel(ctx, cvt->out_chan, d_image, > + IPU_ROTATE_NONE, true); > + > + /* init the MEM-->IC PP ROT IDMAC channel */ > + init_idmac_channel(ctx, cvt->rotation_in_chan, d_image, > + ctx->rot_mode, true); > + > + /* init the destination IC PP ROT-->MEM IDMAC channel */ > + init_idmac_channel(ctx, cvt->rotation_out_chan, d_image, > + IPU_ROTATE_NONE, false); > + > + /* now link IC PP-->MEM to MEM-->IC PP ROT */ > + ipu_idmac_link(cvt->out_chan, cvt->rotation_in_chan); > + } else { > + /* init the destination IC PP-->MEM IDMAC channel */ > + init_idmac_channel(ctx, cvt->out_chan, d_image, > + ctx->rot_mode, false); > + } > + > + /* enable the IC */ > + ipu_ic_enable(cvt->ic); > + > + /* set buffers ready */ > + ipu_idmac_select_buffer(cvt->in_chan, 0); > + ipu_idmac_select_buffer(cvt->out_chan, 0); > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) > + ipu_idmac_select_buffer(cvt->rotation_out_chan, 0); > + if (ctx->double_buffering) { > + ipu_idmac_select_buffer(cvt->in_chan, 1); > + ipu_idmac_select_buffer(cvt->out_chan, 1); > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) > + ipu_idmac_select_buffer(cvt->rotation_out_chan, 1); > + } > + > + /* enable the channels! */ > + ipu_idmac_enable_channel(cvt->in_chan); > + ipu_idmac_enable_channel(cvt->out_chan); > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + ipu_idmac_enable_channel(cvt->rotation_in_chan); > + ipu_idmac_enable_channel(cvt->rotation_out_chan); > + } > + > + ipu_ic_task_enable(cvt->ic); > + > + ipu_cpmem_dump(cvt->in_chan); > + ipu_cpmem_dump(cvt->out_chan); > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + ipu_cpmem_dump(cvt->rotation_in_chan); > + ipu_cpmem_dump(cvt->rotation_out_chan); > + } > + > + ipu_dump(priv->ipu); > + > + return 0; > +} > + > +/* hold irqlock when calling */ > +static int ipu_ic_run(struct image_converter_run *run) > +{ > + struct image_converter_ctx *ctx = run->ctx; > + struct image_converter *cvt = ctx->cvt; > + > + ctx->in.base.phys0 = run->in_phys; > + ctx->out.base.phys0 = run->out_phys; > + > + ctx->cur_buf_num = 0; > + ctx->next_tile = 1; > + > + /* remove run from pending_q and set as current */ > + list_del(&run->list); > + cvt->current_run = run; > + > + return ipu_ic_convert_start(run); > +} > + > +/* hold irqlock when calling */ > +static void ipu_ic_run_next(struct image_converter *cvt) > +{ > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_run *run, *tmp; > + int ret; > + > + list_for_each_entry_safe(run, tmp, &cvt->pending_q, list) { > + /* skip contexts that are aborting */ > + if (run->ctx->aborting) { > + dev_dbg(priv->ipu->dev, > + "%s: skipping aborting ctx %p run %p\n", > + __func__, run->ctx, run); > + continue; > + } > + > + ret = ipu_ic_run(run); > + if (!ret) > + break; > + > + /* > + * something went wrong with start, add the run > + * to done q and continue to the next run in the > + * pending q. > + */ > + run->status = ret; > + list_add_tail(&run->list, &cvt->done_q); > + cvt->current_run = NULL; > + } > +} > + > +static void ipu_ic_empty_done_q(struct image_converter *cvt) > +{ > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_run *run; > + unsigned long flags; > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + while (!list_empty(&cvt->done_q)) { > + run = list_entry(cvt->done_q.next, > + struct image_converter_run, > + list); > + > + list_del(&run->list); > + > + dev_dbg(priv->ipu->dev, > + "%s: completing ctx %p run %p with %d\n", > + __func__, run->ctx, run, run->status); > + > + /* call the completion callback and free the run */ > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + run->ctx->complete(run->ctx->complete_context, run, > + run->status); > + kfree(run); > + spin_lock_irqsave(&cvt->irqlock, flags); > + } > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > +} > + > +/* > + * the bottom half thread clears out the done_q, calling the > + * completion handler for each. > + */ > +static irqreturn_t ipu_ic_bh(int irq, void *dev_id) > +{ > + struct image_converter *cvt = dev_id; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_ctx *ctx; > + unsigned long flags; > + > + dev_dbg(priv->ipu->dev, "%s: enter\n", __func__); > + > + ipu_ic_empty_done_q(cvt); > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + /* > + * the done_q is cleared out, signal any contexts > + * that are aborting that abort can complete. > + */ > + list_for_each_entry(ctx, &cvt->ctx_list, list) { > + if (ctx->aborting) { > + dev_dbg(priv->ipu->dev, > + "%s: signaling abort for ctx %p\n", > + __func__, ctx); > + complete(&ctx->aborted); > + } > + } > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + dev_dbg(priv->ipu->dev, "%s: exit\n", __func__); > + return IRQ_HANDLED; > +} > + > +/* hold irqlock when calling */ > +static irqreturn_t ipu_ic_doirq(struct image_converter_run *run) > +{ > + struct image_converter_ctx *ctx = run->ctx; > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_tile_off *src_off, *dst_off; > + struct ipu_ic_image *s_image = &ctx->in; > + struct ipu_ic_image *d_image = &ctx->out; > + struct ipuv3_channel *outch; > + unsigned int dst_idx; > + > + outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? > + cvt->rotation_out_chan : cvt->out_chan; > + > + /* > + * It is difficult to stop the channel DMA before the channels > + * enter the paused state. Without double-buffering the channels > + * are always in a paused state when the EOF irq occurs, so it > + * is safe to stop the channels now. For double-buffering we > + * just ignore the abort until the operation completes, when it > + * is safe to shut down. > + */ > + if (ctx->aborting && !ctx->double_buffering) { > + ipu_ic_convert_stop(run); > + run->status = -EIO; > + goto done; > + } > + > + if (ctx->next_tile == ctx->num_tiles) { > + /* > + * the conversion is complete > + */ > + ipu_ic_convert_stop(run); > + run->status = 0; > + goto done; > + } > + > + /* > + * not done, place the next tile buffers. > + */ > + if (!ctx->double_buffering) { > + > + src_off = &s_image->tile_off[ctx->next_tile]; > + dst_idx = ctx->out_tile_map[ctx->next_tile]; > + dst_off = &d_image->tile_off[dst_idx]; > + > + ipu_cpmem_set_buffer(cvt->in_chan, 0, > + s_image->base.phys0 + src_off->offset); > + ipu_cpmem_set_buffer(outch, 0, > + d_image->base.phys0 + dst_off->offset); > + if (s_image->fmt->y_depth) > + ipu_cpmem_set_uv_offset(cvt->in_chan, > + src_off->u_off, > + src_off->v_off); > + if (d_image->fmt->y_depth) > + ipu_cpmem_set_uv_offset(outch, > + dst_off->u_off, > + dst_off->v_off); > + > + ipu_idmac_select_buffer(cvt->in_chan, 0); > + ipu_idmac_select_buffer(outch, 0); > + > + } else if (ctx->next_tile < ctx->num_tiles - 1) { > + > + src_off = &s_image->tile_off[ctx->next_tile + 1]; > + dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; > + dst_off = &d_image->tile_off[dst_idx]; > + > + ipu_cpmem_set_buffer(cvt->in_chan, ctx->cur_buf_num, > + s_image->base.phys0 + src_off->offset); > + ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, > + d_image->base.phys0 + dst_off->offset); > + > + ipu_idmac_select_buffer(cvt->in_chan, ctx->cur_buf_num); > + ipu_idmac_select_buffer(outch, ctx->cur_buf_num); > + > + ctx->cur_buf_num ^= 1; > + } > + > + ctx->next_tile++; > + return IRQ_HANDLED; > +done: > + list_add_tail(&run->list, &cvt->done_q); > + cvt->current_run = NULL; > + ipu_ic_run_next(cvt); > + return IRQ_WAKE_THREAD; > +} > + > +static irqreturn_t ipu_ic_norotate_irq(int irq, void *data) > +{ > + struct image_converter *cvt = data; > + struct image_converter_ctx *ctx; > + struct image_converter_run *run; > + unsigned long flags; > + irqreturn_t ret; > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + /* get current run and its context */ > + run = cvt->current_run; > + if (!run) { > + ret = IRQ_NONE; > + goto out; > + } > + > + ctx = run->ctx; > + > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + /* this is a rotation operation, just ignore */ > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + return IRQ_HANDLED; > + } > + > + ret = ipu_ic_doirq(run); > +out: > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + return ret; > +} > + > +static irqreturn_t ipu_ic_rotate_irq(int irq, void *data) > +{ > + struct image_converter *cvt = data; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_ctx *ctx; > + struct image_converter_run *run; > + unsigned long flags; > + irqreturn_t ret; > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + /* get current run and its context */ > + run = cvt->current_run; > + if (!run) { > + ret = IRQ_NONE; > + goto out; > + } > + > + ctx = run->ctx; > + > + if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { > + /* this was NOT a rotation operation, shouldn't happen */ > + dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + return IRQ_HANDLED; > + } > + > + ret = ipu_ic_doirq(run); > +out: > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + return ret; > +} > + > +/* > + * try to force the completion of runs for this ctx. Called when > + * abort wait times out in ipu_image_convert_abort(). > + */ > +static void ipu_ic_force_abort(struct image_converter_ctx *ctx) > +{ > + struct image_converter *cvt = ctx->cvt; > + struct image_converter_run *run; > + unsigned long flags; > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + run = cvt->current_run; > + if (run && run->ctx == ctx) { > + ipu_ic_convert_stop(run); > + run->status = -EIO; > + list_add_tail(&run->list, &cvt->done_q); > + cvt->current_run = NULL; > + ipu_ic_run_next(cvt); > + } > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + ipu_ic_empty_done_q(cvt); > +} > + > +static void ipu_ic_release_ipu_resources(struct image_converter *cvt) > +{ > + if (cvt->out_eof_irq >= 0) > + free_irq(cvt->out_eof_irq, cvt); > + if (cvt->rot_out_eof_irq >= 0) > + free_irq(cvt->rot_out_eof_irq, cvt); > + > + if (!IS_ERR_OR_NULL(cvt->in_chan)) > + ipu_idmac_put(cvt->in_chan); > + if (!IS_ERR_OR_NULL(cvt->out_chan)) > + ipu_idmac_put(cvt->out_chan); > + if (!IS_ERR_OR_NULL(cvt->rotation_in_chan)) > + ipu_idmac_put(cvt->rotation_in_chan); > + if (!IS_ERR_OR_NULL(cvt->rotation_out_chan)) > + ipu_idmac_put(cvt->rotation_out_chan); > + > + cvt->in_chan = cvt->out_chan = cvt->rotation_in_chan = > + cvt->rotation_out_chan = NULL; > + cvt->out_eof_irq = cvt->rot_out_eof_irq = -1; > +} > + > +static int ipu_ic_get_ipu_resources(struct image_converter *cvt) > +{ > + const struct ic_task_channels *chan = cvt->ic->ch; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + int ret; > + > + /* get IDMAC channels */ > + cvt->in_chan = ipu_idmac_get(priv->ipu, chan->in); > + cvt->out_chan = ipu_idmac_get(priv->ipu, chan->out); > + if (IS_ERR(cvt->in_chan) || IS_ERR(cvt->out_chan)) { > + dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); > + ret = -EBUSY; > + goto err; > + } > + > + cvt->rotation_in_chan = ipu_idmac_get(priv->ipu, chan->rot_in); > + cvt->rotation_out_chan = ipu_idmac_get(priv->ipu, chan->rot_out); > + if (IS_ERR(cvt->rotation_in_chan) || IS_ERR(cvt->rotation_out_chan)) { > + dev_err(priv->ipu->dev, > + "could not acquire idmac rotation channels\n"); > + ret = -EBUSY; > + goto err; > + } > + > + /* acquire the EOF interrupts */ > + cvt->out_eof_irq = ipu_idmac_channel_irq(priv->ipu, > + cvt->out_chan, > + IPU_IRQ_EOF); > + > + ret = request_threaded_irq(cvt->out_eof_irq, > + ipu_ic_norotate_irq, ipu_ic_bh, > + 0, "ipu-ic", cvt); > + if (ret < 0) { > + dev_err(priv->ipu->dev, "could not acquire irq %d\n", > + cvt->out_eof_irq); > + cvt->out_eof_irq = -1; > + goto err; > + } > + > + cvt->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu, > + cvt->rotation_out_chan, > + IPU_IRQ_EOF); > + > + ret = request_threaded_irq(cvt->rot_out_eof_irq, > + ipu_ic_rotate_irq, ipu_ic_bh, > + 0, "ipu-ic", cvt); > + if (ret < 0) { > + dev_err(priv->ipu->dev, "could not acquire irq %d\n", > + cvt->rot_out_eof_irq); > + cvt->rot_out_eof_irq = -1; > + goto err; > + } > + > + return 0; > +err: > + ipu_ic_release_ipu_resources(cvt); > + return ret; > +} > + > +static int ipu_ic_fill_image(struct image_converter_ctx *ctx, > + struct ipu_ic_image *ic_image, > + struct ipu_image *image, > + enum image_convert_type type) > +{ > + struct ipu_ic_priv *priv = ctx->cvt->ic->priv; > + > + ic_image->base = *image; > + ic_image->type = type; > + > + ic_image->fmt = ipu_ic_get_format(image->pix.pixelformat); > + if (!ic_image->fmt) { > + dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", > + type == IMAGE_CONVERT_OUT ? "Output" : "Input"); > + return -EINVAL; > + } > + > + if (ic_image->fmt->y_depth) > + ic_image->stride = (ic_image->fmt->y_depth * > + ic_image->base.pix.width) >> 3; > + else > + ic_image->stride = ic_image->base.pix.bytesperline; > + > + ipu_ic_calc_tile_dimensions(ctx, ic_image); > + ipu_ic_calc_tile_offsets(ctx, ic_image); > + > + return 0; > +} > + > +/* borrowed from drivers/media/v4l2-core/v4l2-common.c */ > +static unsigned int clamp_align(unsigned int x, unsigned int min, > + unsigned int max, unsigned int align) > +{ > + /* Bits that must be zero to be aligned */ > + unsigned int mask = ~((1 << align) - 1); > + > + /* Clamp to aligned min and max */ > + x = clamp(x, (min + ~mask) & mask, max & mask); > + > + /* Round to nearest aligned value */ > + if (align) > + x = (x + (1 << (align - 1))) & mask; > + > + return x; > +} > + > +/* > + * We have to adjust the tile width such that the tile physaddrs and > + * U and V plane offsets are multiples of 8 bytes as required by > + * the IPU DMA Controller. For the planar formats, this corresponds > + * to a pixel alignment of 16 (but use a more formal equation since > + * the variables are available). For all the packed formats, 8 is > + * good enough. > + */ > +static inline u32 tile_width_align(const struct ipu_ic_pixfmt *fmt) > +{ > + return fmt->y_depth ? (64 * fmt->uv_width_dec) / fmt->y_depth : 8; > +} > + > +/* > + * For tile height alignment, we have to ensure that the output tile > + * heights are multiples of 8 lines if the IRT is required by the > + * given rotation mode (the IRT performs rotations on 8x8 blocks > + * at a time). If the IRT is not used, or for input image tiles, > + * 2 lines are good enough. > + */ > +static inline u32 tile_height_align(enum image_convert_type type, > + enum ipu_rotate_mode rot_mode) > +{ > + return (type == IMAGE_CONVERT_OUT && > + ipu_rot_mode_is_irt(rot_mode)) ? 8 : 2; > +} > + > +/* Adjusts input/output images to IPU restrictions */ > +int ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode) > +{ > + const struct ipu_ic_pixfmt *infmt, *outfmt; > + unsigned int num_in_rows, num_in_cols; > + unsigned int num_out_rows, num_out_cols; > + u32 w_align, h_align; > + > + infmt = ipu_ic_get_format(in->pix.pixelformat); > + outfmt = ipu_ic_get_format(out->pix.pixelformat); > + > + /* set some defaults if needed */ > + if (!infmt) { > + in->pix.pixelformat = V4L2_PIX_FMT_RGB24; > + infmt = ipu_ic_get_format(V4L2_PIX_FMT_RGB24); > + } > + if (!outfmt) { > + out->pix.pixelformat = V4L2_PIX_FMT_RGB24; > + outfmt = ipu_ic_get_format(V4L2_PIX_FMT_RGB24); > + } > + > + if (!in->pix.width || !in->pix.height) { > + in->pix.width = 640; > + in->pix.height = 480; > + } > + if (!out->pix.width || !out->pix.height) { > + out->pix.width = 640; > + out->pix.height = 480; > + } > + > + /* image converter does not handle fields */ > + in->pix.field = out->pix.field = V4L2_FIELD_NONE; > + > + /* resizer cannot downsize more than 4:1 */ > + if (ipu_rot_mode_is_irt(rot_mode)) { > + out->pix.height = max_t(__u32, out->pix.height, > + in->pix.width / 4); > + out->pix.width = max_t(__u32, out->pix.width, > + in->pix.height / 4); > + } else { > + out->pix.width = max_t(__u32, out->pix.width, > + in->pix.width / 4); > + out->pix.height = max_t(__u32, out->pix.height, > + in->pix.height / 4); > + } > + > + /* get tiling rows/cols from output format */ > + num_out_rows = ipu_ic_num_stripes(out->pix.height); > + num_out_cols = ipu_ic_num_stripes(out->pix.width); > + if (ipu_rot_mode_is_irt(rot_mode)) { > + num_in_rows = num_out_cols; > + num_in_cols = num_out_rows; > + } else { > + num_in_rows = num_out_rows; > + num_in_cols = num_out_cols; > + } > + > + /* align input width/height */ > + w_align = ilog2(tile_width_align(infmt) * num_in_cols); > + h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, rot_mode) * > + num_in_rows); > + in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align); > + in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align); > + > + /* align output width/height */ > + w_align = ilog2(tile_width_align(outfmt) * num_out_cols); > + h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, rot_mode) * > + num_out_rows); > + out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align); > + out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align); > + > + /* set input/output strides and image sizes */ > + in->pix.bytesperline = (in->pix.width * infmt->bpp) >> 3; > + in->pix.sizeimage = in->pix.height * in->pix.bytesperline; > + out->pix.bytesperline = (out->pix.width * outfmt->bpp) >> 3; > + out->pix.sizeimage = out->pix.height * out->pix.bytesperline; > + > + return 0; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); > + > +/* > + * this is used by ipu_image_convert_prepare() to verify set input and > + * output images are valid before starting the conversion. Clients can > + * also call it before calling ipu_image_convert_prepare(). > + */ > +int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode) > +{ > + struct ipu_image testin, testout; > + int ret; > + > + testin = *in; > + testout = *out; > + > + ret = ipu_image_convert_adjust(&testin, &testout, rot_mode); > + if (ret) > + return ret; > + > + if (testin.pix.width != in->pix.width || > + testin.pix.height != in->pix.height || > + testout.pix.width != out->pix.width || > + testout.pix.height != out->pix.height) > + return -EINVAL; > + > + return 0; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_verify); > + > +/* > + * Call ipu_image_convert_prepare() to prepare for the conversion of > + * given images and rotation mode. Returns a new conversion context. > + */ > +struct image_converter_ctx * > +ipu_image_convert_prepare(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode, > + image_converter_cb_t complete, > + void *complete_context) > +{ > + struct ipu_ic_priv *priv = ic->priv; > + struct image_converter *cvt = &ic->cvt; > + struct ipu_ic_image *s_image, *d_image; > + struct image_converter_ctx *ctx; > + unsigned long flags; > + bool get_res; > + int ret; > + > + if (!ic || !in || !out || !complete) > + return ERR_PTR(-EINVAL); > + > + /* verify the in/out images before continuing */ > + ret = ipu_image_convert_verify(in, out, rot_mode); > + if (ret) { > + dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", > + __func__); > + return ERR_PTR(ret); > + } > + > + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); > + if (!ctx) > + return ERR_PTR(-ENOMEM); > + > + dev_dbg(priv->ipu->dev, "%s: ctx %p\n", __func__, ctx); > + > + ctx->cvt = cvt; > + init_completion(&ctx->aborted); > + > + s_image = &ctx->in; > + d_image = &ctx->out; > + > + /* set tiling and rotation */ > + d_image->num_rows = ipu_ic_num_stripes(out->pix.height); > + d_image->num_cols = ipu_ic_num_stripes(out->pix.width); > + if (ipu_rot_mode_is_irt(rot_mode)) { > + s_image->num_rows = d_image->num_cols; > + s_image->num_cols = d_image->num_rows; > + } else { > + s_image->num_rows = d_image->num_rows; > + s_image->num_cols = d_image->num_cols; > + } > + > + ctx->num_tiles = d_image->num_cols * d_image->num_rows; > + ctx->rot_mode = rot_mode; > + > + ret = ipu_ic_fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); > + if (ret) > + goto out_free; > + ret = ipu_ic_fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); > + if (ret) > + goto out_free; > + > + ipu_ic_calc_out_tile_map(ctx); > + > + ipu_ic_dump_format(ctx, s_image); > + ipu_ic_dump_format(ctx, d_image); > + > + ctx->complete = complete; > + ctx->complete_context = complete_context; > + > + /* > + * Can we use double-buffering for this operation? If there is > + * only one tile (the whole image can be converted in a single > + * operation) there's no point in using double-buffering. Also, > + * the IPU's IDMAC channels allow only a single U and V plane > + * offset shared between both buffers, but these offsets change > + * for every tile, and therefore would have to be updated for > + * each buffer which is not possible. So double-buffering is > + * impossible when either the source or destination images are > + * a planar format (YUV420, YUV422P, etc.). > + */ > + ctx->double_buffering = (ctx->num_tiles > 1 && > + !s_image->fmt->y_depth && > + !d_image->fmt->y_depth); > + > + if (ipu_rot_mode_is_irt(ctx->rot_mode)) { > + ret = ipu_ic_alloc_dma_buf(priv, &ctx->rot_intermediate[0], > + d_image->tile.size); > + if (ret) > + goto out_free; > + if (ctx->double_buffering) { > + ret = ipu_ic_alloc_dma_buf(priv, > + &ctx->rot_intermediate[1], > + d_image->tile.size); > + if (ret) > + goto out_free_dmabuf0; > + } > + } > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + get_res = list_empty(&cvt->ctx_list); > + > + list_add_tail(&ctx->list, &cvt->ctx_list); > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + if (get_res) { > + ret = ipu_ic_get_ipu_resources(cvt); > + if (ret) > + goto out_free_dmabuf1; > + } > + > + return ctx; > + > +out_free_dmabuf1: > + ipu_ic_free_dma_buf(priv, &ctx->rot_intermediate[1]); > + spin_lock_irqsave(&cvt->irqlock, flags); > + list_del(&ctx->list); > + spin_unlock_irqrestore(&cvt->irqlock, flags); > +out_free_dmabuf0: > + ipu_ic_free_dma_buf(priv, &ctx->rot_intermediate[0]); > +out_free: > + kfree(ctx); > + return ERR_PTR(ret); > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); > + > +/* > + * Carry out a single image conversion. Only the physaddr's of the input > + * and output image buffers are needed. The conversion context must have > + * been created previously with ipu_image_convert_prepare(). Returns the > + * new run object. > + */ > +struct image_converter_run * > +ipu_image_convert_run(struct image_converter_ctx *ctx, > + dma_addr_t in_phys, dma_addr_t out_phys) > +{ > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_run *run; > + unsigned long flags; > + int ret = 0; > + > + run = kzalloc(sizeof(*run), GFP_KERNEL); > + if (!run) > + return ERR_PTR(-ENOMEM); > + > + run->ctx = ctx; > + run->in_phys = in_phys; > + run->out_phys = out_phys; > + > + dev_dbg(priv->ipu->dev, "%s: ctx %p run %p\n", __func__, > + ctx, run); > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + if (ctx->aborting) { > + ret = -EIO; > + goto unlock; > + } > + > + list_add_tail(&run->list, &cvt->pending_q); > + > + if (!cvt->current_run) { > + ret = ipu_ic_run(run); > + if (ret) > + cvt->current_run = NULL; > + } > +unlock: > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + if (ret) { > + kfree(run); > + run = ERR_PTR(ret); > + } > + > + return run; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_run); > + > +/* Abort any active or pending conversions for this context */ > +void ipu_image_convert_abort(struct image_converter_ctx *ctx) > +{ > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + struct image_converter_run *run, *active_run, *tmp; > + unsigned long flags; > + int run_count, ret; > + bool need_abort; > + > + reinit_completion(&ctx->aborted); > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + /* move all remaining pending runs in this context to done_q */ > + list_for_each_entry_safe(run, tmp, &cvt->pending_q, list) { > + if (run->ctx != ctx) > + continue; > + run->status = -EIO; > + list_move_tail(&run->list, &cvt->done_q); > + } > + > + run_count = ipu_ic_get_run_count(ctx, &cvt->done_q); > + active_run = (cvt->current_run && cvt->current_run->ctx == ctx) ? > + cvt->current_run : NULL; > + > + need_abort = (run_count || active_run); > + > + ctx->aborting = need_abort; > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + if (!need_abort) { > + dev_dbg(priv->ipu->dev, "%s: no abort needed for ctx %p\n", > + __func__, ctx); > + return; > + } > + > + dev_dbg(priv->ipu->dev, > + "%s: wait for completion: %d runs, active run %p\n", > + __func__, run_count, active_run); > + > + ret = wait_for_completion_timeout(&ctx->aborted, > + msecs_to_jiffies(10000)); > + if (ret == 0) { > + dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); > + ipu_ic_force_abort(ctx); > + } > + > + ctx->aborting = false; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_abort); > + > +/* Unprepare image conversion context */ > +void ipu_image_convert_unprepare(struct image_converter_ctx *ctx) > +{ > + struct image_converter *cvt = ctx->cvt; > + struct ipu_ic_priv *priv = cvt->ic->priv; > + unsigned long flags; > + bool put_res; > + > + /* make sure no runs are hanging around */ > + ipu_image_convert_abort(ctx); > + > + dev_dbg(priv->ipu->dev, "%s: removing ctx %p\n", __func__, ctx); > + > + spin_lock_irqsave(&cvt->irqlock, flags); > + > + list_del(&ctx->list); > + > + put_res = list_empty(&cvt->ctx_list); > + > + spin_unlock_irqrestore(&cvt->irqlock, flags); > + > + if (put_res) > + ipu_ic_release_ipu_resources(cvt); > + > + ipu_ic_free_dma_buf(priv, &ctx->rot_intermediate[1]); > + ipu_ic_free_dma_buf(priv, &ctx->rot_intermediate[0]); > + > + kfree(ctx); > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); > + > +/* > + * "Canned" asynchronous single image conversion. On successful return > + * caller must call ipu_image_convert_unprepare() after conversion completes. > + * Returns the new conversion context. > + */ > +struct image_converter_ctx * > +ipu_image_convert(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode, > + image_converter_cb_t complete, > + void *complete_context) > +{ > + struct image_converter_ctx *ctx; > + struct image_converter_run *run; > + > + ctx = ipu_image_convert_prepare(ic, in, out, rot_mode, > + complete, complete_context); > + if (IS_ERR(ctx)) > + return ctx; > + > + run = ipu_image_convert_run(ctx, in->phys0, out->phys0); > + if (IS_ERR(run)) { > + ipu_image_convert_unprepare(ctx); > + return ERR_PTR(PTR_ERR(run)); > + } > + > + return ctx; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert); > + > +/* "Canned" synchronous single image conversion */ > +static void image_convert_sync_complete(void *data, > + struct image_converter_run *run, > + int err) > +{ > + struct completion *comp = data; > + > + complete(comp); > +} > + > +int ipu_image_convert_sync(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode) > +{ > + struct image_converter_ctx *ctx; > + struct completion comp; > + int ret; > + > + init_completion(&comp); > + > + ctx = ipu_image_convert(ic, in, out, rot_mode, > + image_convert_sync_complete, &comp); > + if (IS_ERR(ctx)) > + return PTR_ERR(ctx); > + > + ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); > + ret = (ret == 0) ? -ETIMEDOUT : 0; > + > + ipu_image_convert_unprepare(ctx); > + > + return ret; > +} > +EXPORT_SYMBOL_GPL(ipu_image_convert_sync); > + > int ipu_ic_enable(struct ipu_ic *ic) > { > struct ipu_ic_priv *priv = ic->priv; > @@ -759,6 +2428,7 @@ int ipu_ic_init(struct ipu_soc *ipu, struct device *dev, > ipu->ic_priv = priv; > > spin_lock_init(&priv->lock); > + > priv->base = devm_ioremap(dev, base, PAGE_SIZE); > if (!priv->base) > return -ENOMEM; > @@ -771,10 +2441,21 @@ int ipu_ic_init(struct ipu_soc *ipu, struct device *dev, > priv->ipu = ipu; > > for (i = 0; i < IC_NUM_TASKS; i++) { > - priv->task[i].task = i; > - priv->task[i].priv = priv; > - priv->task[i].reg = &ic_task_reg[i]; > - priv->task[i].bit = &ic_task_bit[i]; > + struct ipu_ic *ic = &priv->task[i]; > + struct image_converter *cvt = &ic->cvt; > + > + ic->task = i; > + ic->priv = priv; > + ic->reg = &ic_task_reg[i]; > + ic->bit = &ic_task_bit[i]; > + ic->ch = &ic_task_ch[i]; > + > + cvt->ic = ic; > + spin_lock_init(&cvt->irqlock); > + INIT_LIST_HEAD(&cvt->ctx_list); > + INIT_LIST_HEAD(&cvt->pending_q); > + INIT_LIST_HEAD(&cvt->done_q); > + cvt->out_eof_irq = cvt->rot_out_eof_irq = -1; > } > > return 0; > diff --git a/include/video/imx-ipu-v3.h b/include/video/imx-ipu-v3.h > index 8f77ddb..5938a69 100644 > --- a/include/video/imx-ipu-v3.h > +++ b/include/video/imx-ipu-v3.h > @@ -63,17 +63,25 @@ enum ipu_csi_dest { > /* > * Enumeration of IPU rotation modes > */ > +#define IPU_ROT_BIT_VFLIP (1 << 0) > +#define IPU_ROT_BIT_HFLIP (1 << 1) > +#define IPU_ROT_BIT_90 (1 << 2) > + > enum ipu_rotate_mode { > IPU_ROTATE_NONE = 0, > - IPU_ROTATE_VERT_FLIP, > - IPU_ROTATE_HORIZ_FLIP, > - IPU_ROTATE_180, > - IPU_ROTATE_90_RIGHT, > - IPU_ROTATE_90_RIGHT_VFLIP, > - IPU_ROTATE_90_RIGHT_HFLIP, > - IPU_ROTATE_90_LEFT, > + IPU_ROTATE_VERT_FLIP = IPU_ROT_BIT_VFLIP, > + IPU_ROTATE_HORIZ_FLIP = IPU_ROT_BIT_HFLIP, > + IPU_ROTATE_180 = (IPU_ROT_BIT_VFLIP | IPU_ROT_BIT_HFLIP), > + IPU_ROTATE_90_RIGHT = IPU_ROT_BIT_90, > + IPU_ROTATE_90_RIGHT_VFLIP = (IPU_ROT_BIT_90 | IPU_ROT_BIT_VFLIP), > + IPU_ROTATE_90_RIGHT_HFLIP = (IPU_ROT_BIT_90 | IPU_ROT_BIT_HFLIP), > + IPU_ROTATE_90_LEFT = (IPU_ROT_BIT_90 | > + IPU_ROT_BIT_VFLIP | IPU_ROT_BIT_HFLIP), > }; > > +/* 90-degree rotations require the IRT unit */ > +#define ipu_rot_mode_is_irt(m) ((m) >= IPU_ROTATE_90_RIGHT) > + > enum ipu_color_space { > IPUV3_COLORSPACE_RGB, > IPUV3_COLORSPACE_YUV, > @@ -320,6 +328,7 @@ enum ipu_ic_task { > }; > > struct ipu_ic; > + > int ipu_ic_task_init(struct ipu_ic *ic, > int in_width, int in_height, > int out_width, int out_height, > @@ -335,6 +344,40 @@ int ipu_ic_task_idma_init(struct ipu_ic *ic, struct ipuv3_channel *channel, > u32 width, u32 height, int burst_size, > enum ipu_rotate_mode rot); > int ipu_ic_set_src(struct ipu_ic *ic, int csi_id, bool vdi); > + > +struct image_converter_ctx; > +struct image_converter_run; > + > +typedef void (*image_converter_cb_t)(void *ctx, > + struct image_converter_run *run, > + int err); > + > +int ipu_image_convert_enum_format(int index, const char **desc, u32 *fourcc); > +int ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode); > +int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode); > +struct image_converter_ctx * > +ipu_image_convert_prepare(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode, > + image_converter_cb_t complete, > + void *complete_context); > +void ipu_image_convert_unprepare(struct image_converter_ctx *ctx); > +struct image_converter_run * > +ipu_image_convert_run(struct image_converter_ctx *ctx, > + dma_addr_t in_phys, dma_addr_t out_phys); > +void ipu_image_convert_abort(struct image_converter_ctx *ctx); > +struct image_converter_ctx * > +ipu_image_convert(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode, > + image_converter_cb_t complete, > + void *complete_context); > +int ipu_image_convert_sync(struct ipu_ic *ic, > + struct ipu_image *in, struct ipu_image *out, > + enum ipu_rotate_mode rot_mode); > + > int ipu_ic_enable(struct ipu_ic *ic); > int ipu_ic_disable(struct ipu_ic *ic); > struct ipu_ic *ipu_ic_get(struct ipu_soc *ipu, enum ipu_ic_task task); Thanks, Mauro -- To unsubscribe from this list: send the line "unsubscribe linux-media" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html