Hello all, There is currently no good documentation of glibc's 'sprof' command, so I wrote the man page below. Comments, error reports, and suggestions for improvement welcome. Thanks Michael .\" Copyright (C) 2014 Michael Kerrisk <mtk.manpages@xxxxxxxxx> .\" .\" %%%LICENSE_START(VERBATIM) .\" Permission is granted to make and distribute verbatim copies of this .\" manual provided the copyright notice and this permission notice are .\" preserved on all copies. .\" .\" Permission is granted to copy and distribute modified versions of this .\" manual under the conditions for verbatim copying, provided that the .\" entire resulting derived work is distributed under the terms of a .\" permission notice identical to this one. .\" .\" Since the Linux kernel and libraries are constantly changing, this .\" manual page may be incorrect or out-of-date. The author(s) assume no .\" responsibility for errors or omissions, or for damages resulting from .\" the use of the information contained herein. The author(s) may not .\" have taken the same level of care in the production of this manual, .\" which is licensed free of charge, as they might when working .\" professionally. .\" .\" Formatted or processed versions of this manual, if unaccompanied by .\" the source, must acknowledge the copyright and authors of this work. .\" %%%LICENSE_END .\" .TH SPROF 1 2014-06-10 "Linux" "Linux User Manual" .SH NAME sprof \- read and display shared object profiling data .SH SYNOPSIS .nf .BR sprof " [OPTION]... SHARED-OBJECT-PATH [PROFILE-DATA-PATH]" .fi .SH DESCRIPTION The .B sprof command displays a profiling summary for the shared object specified as its first command-line argument. The profiling summary is created using previously generated profiling data in the (optional) second command-line argument. If the profiling data pathname is omitted, then .B sprof will attempt to deduce it using the soname of the shared object, looking for a file with the name .IR <soname>.profile in the current directory. .SH OPTIONS The following command-line options specify the profile output to be produced: .TP .BR \-c ", " \-\-call\-pairs Print a list of pairs of call paths for the interfaces exported by the shared object, along with the number of times each path is used. .TP .BR \-p ", " \-\-flat\-profile Generate a flat profile of all of the functions in the monitored object, with counts and ticks. .TP .BR \-q ", " \-\-graph Generate a call graph. .PP If none of the above options are specified, then the default behavior is to display a flat profile and a call graph. .PP The following additional command-line options are available: .TP .BR \-? ", " \-\-help Display a summary of command-line options and arguments and exit. .TP .BR \-\-usage Display a short usage message and exit. .TP .BR \-V ", " \-\-version Display the program version and exit. .SH CONFORMING TO The .B sprof command is a GNU extension, not present in POSIX.1. .SH EXAMPLE The following example demonstrates the use of .BR sprof . The example consists of a main program that calls two functions in a shared library. First, the code of the main program: .in +4n .nf $ \fBcat prog.c\fP #include <stdlib.h> void x1(void); void x2(void); int main(int argc, char *argv[]) { x1(); x2(); exit(EXIT_SUCCESS); } .fi .in .PP The functions .IR x1() and .IR x2() are defined in the following source file that is used to construct the shared library: .in +4n .nf $ \fBcat libdemo.c\fP #include <unistd.h> void consumeCpu1(int lim) { int j; for (j = 0; j < lim; j++) getppid(); } void x1(void) { int j; for (j = 0; j < 100; j++) consumeCpu1(200000); } void consumeCpu2(int lim) { int j; for (j = 0; j < lim; j++) getppid(); } void x2(void) { int j; for (j = 0; j < 1000; j++) consumeCpu2(10000); } .fi .in .PP Now we construct the shared library with the real name .IR libdemo.so.1.0.1 , and the soname .IR libdemo.so.1 : .in +4n .nf $ \fBcc \-g \-fPIC \-shared \-Wl,\-soname,libdemo.so.1 \e\fP \fB\-o libdemo.so.1.0.1 libdemo.c\fP .fi .in .PP Then we construct symbolic links for the library soname and the library linker name: .in +4n .nf $ \fBln \-sf libdemo.so.1.0.1 libdemo.so.1\fP $ \fBln \-sf libdemo.so.1 libdemo.so\fP .fi .in .PP Next, we compile the main program, linking it against the shared library, and then list the dynamic dependencies of the program: .in +4n .nf $ \fBcc \-g \-o prog prog.c \-L. \-ldemo\fP $ \fBldd prog\fP linux\-vdso.so.1 => (0x00007fff86d66000) libdemo.so.1 => not found libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000) /lib64/ld\-linux\-x86\-64.so.2 (0x00007fd4dc51f000) .fi .in .PP In order to get profiling information for the shared library, we define the environment variable .BR LD_PROFILE with the soname of the library: .in +4n .nf $ \fBexport LD_PROFILE=libdemo.so.1\fP .fi .in .PP We then define the environment variable .BR LD_PROFILE_OUTPUT with the pathname of the directory where profile output should be written, and create that directory if it does not exist already: .in +4n .nf $ \fBexport LD_PROFILE_OUTPUT=$(pwd)/prof_data\fP $ \fBmkdir \-p $LD_PROFILE_OUTPUT\fP .fi .in .PP .B LD_PROFILE causes profiling output to be .I appended to the output file if it already exists, so we ensure that there is no preexisting profiling data: .in +4n .nf $ \fBrm \-f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile\fP .fi .in .PP We then run the program to produce the profiling output, which is written to a file in the directory specified in .BR LD_PROFILE_OUTPUT : .in +4n .nf $ \fBLD_LIBRARY_PATH=. ./prog\fP $ \fBls prof_data\fP libdemo.so.1.profile .fi .in .PP We then use the .BR "sprof \-p" option to generate a flat profile with counts and ticks: .in +4n .nf $ \fBsprof \-p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile\fP Flat profile: Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls us/call us/call name 60.00 0.06 0.06 100 600.00 consumeCpu1 40.00 0.10 0.04 1000 40.00 consumeCpu2 0.00 0.10 0.00 1 0.00 x1 0.00 0.10 0.00 1 0.00 x2 .fi .in .PP The .BR "sprof \-q" option generates a call graph: .in +4n .nf $ \fBsprof \-q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile\fP index % time self children called name 0.00 0.00 100/100 x1 [1] [0] 100.0 0.00 0.00 100 consumeCpu1 [0] \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- 0.00 0.00 1/1 <UNKNOWN> [1] 0.0 0.00 0.00 1 x1 [1] 0.00 0.00 100/100 consumeCpu1 [0] \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- 0.00 0.00 1000/1000 x2 [3] [2] 0.0 0.00 0.00 1000 consumeCpu2 [2] \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- 0.00 0.00 1/1 <UNKNOWN> [3] 0.0 0.00 0.00 1 x2 [3] 0.00 0.00 1000/1000 consumeCpu2 [2] \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- .fi .in .PP Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of the profiled object (in this example, these are instances of .IR main() ). .PP The .BR "sprof \-c" option generates a list of call pairs and the number of their occurrences: .in +4n .nf $ \fBsprof \-c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile\fP <UNKNOWN> x1 1 x1 consumeCpu1 100 <UNKNOWN> x2 1 x2 consumeCpu2 1000 .fi .in .SH SEE ALSO .BR gprof (1), .BR ldd (1), .BR ld.so (8) -- Michael Kerrisk Linux man-pages maintainer; http://www.kernel.org/doc/man-pages/ Linux/UNIX System Programming Training: http://man7.org/training/ -- To unsubscribe from this list: send the line "unsubscribe linux-man" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html