From: Geert Uytterhoeven <geert@xxxxxxxxxxxxxx>
Date: Tue, 7 Jun 2022 14:45:41 +0200
Hi Alexander,
Hi!
On Mon, Jun 6, 2022 at 1:50 PM Alexander Lobakin
<alexandr.lobakin@xxxxxxxxx> wrote:
While I was working on converting some structure fields from a fixed
type to a bitmap, I started observing code size increase not only in
places where the code works with the converted structure fields, but
also where the converted vars were on the stack. That said, the
following code:
DECLARE_BITMAP(foo, BITS_PER_LONG) = { }; // -> unsigned long foo[1];
unsigned long bar = BIT(BAR_BIT);
unsigned long baz = 0;
__set_bit(FOO_BIT, foo);
baz |= BIT(BAZ_BIT);
BUILD_BUG_ON(!__builtin_constant_p(test_bit(FOO_BIT, foo));
BUILD_BUG_ON(!__builtin_constant_p(bar & BAR_BIT));
BUILD_BUG_ON(!__builtin_constant_p(baz & BAZ_BIT));
triggers the first assertion on x86_64, which means that the
compiler is unable to evaluate it to a compile-time initializer
when the architecture-specific bitop is used even if it's obvious.
I found that this is due to that many architecture-specific
non-atomic bitop implementations use inline asm or other hacks which
are faster or more robust when working with "real" variables (i.e.
fields from the structures etc.), but the compilers have no clue how
to optimize them out when called on compile-time constants.
So, in order to let the compiler optimize out such cases, expand the
test_bit() and __*_bit() definitions with a compile-time condition
check, so that they will pick the generic C non-atomic bitop
implementations when all of the arguments passed are compile-time
constants, which means that the result will be a compile-time
constant as well and the compiler will produce more efficient and
simple code in 100% cases (no changes when there's at least one
non-compile-time-constant argument).
The condition itself:
if (
__builtin_constant_p(nr) && /* <- bit position is constant */
__builtin_constant_p(!!addr) && /* <- compiler knows bitmap addr is
always either NULL or not */
addr && /* <- bitmap addr is not NULL */
__builtin_constant_p(*addr) /* <- compiler knows the value of
the target bitmap */
)
/* then pick the generic C variant
else
/* old code path, arch-specific
I also tried __is_constexpr() as suggested by Andy, but it was
always returning 0 ('not a constant') for the 2,3 and 4th
conditions.
The savings on x86_64 with LLVM are insane (.text):
$ scripts/bloat-o-meter -c vmlinux.{base,test}
add/remove: 72/75 grow/shrink: 182/518 up/down: 53925/-137810 (-83885)
$ scripts/bloat-o-meter -c vmlinux.{base,mod}
add/remove: 7/1 grow/shrink: 1/19 up/down: 1135/-4082 (-2947)
$ scripts/bloat-o-meter -c vmlinux.{base,all}
add/remove: 79/76 grow/shrink: 184/537 up/down: 55076/-141892 (-86816)
Thank you!
I gave it a try on m68k, and am a bit disappointed seeing an increase
in code size:
add/remove: 49/13 grow/shrink: 279/138 up/down: 6434/-3342 (3092)
Ufff, that sucks =\
Could you please try to compile the following code snippet (with the
series applied)?
unsigned long map;
bitmap_zero(&map, BITS_PER_LONG);
__set_bit(1, &map);
BUILD_BUG_ON(!__builtin_constant_p(map));
If it fails during the vmlinux linkage, it will mean that on your
architecture/setup the compiler is unable to optimize the generic
implementations to compile-time constants and I'll need to debug
this more (probably via some compiler explorer).
You could also check the vmlinux size after applying each patch
to see which one does this if you feel like it :)
This is atari_defconfig on a tree based on v5.19-rc1, with
m68k-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04) 9.4.0, GNU ld (GNU
Binutils for Ubuntu) 2.34).
Gr{oetje,eeting}s,
Geert
--
Geert Uytterhoeven -- There's lots of Linux beyond ia32 -- geert@xxxxxxxxxxxxxx
In personal conversations with technical people, I call myself a hacker. But
when I'm talking to journalists I just say "programmer" or something like that.
-- Linus Torvalds
Thanks,
Olek