Re: [PATCH bpf-next v3 07/11] bpf: Fix a false rejection caused by AND operation

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 4/20/2024 7:00 AM, Eduard Zingerman wrote:
On Thu, 2024-04-11 at 20:27 +0800, Xu Kuohai wrote:
From: Xu Kuohai <xukuohai@xxxxxxxxxx>

With lsm return value check, the no-alu32 version test_libbpf_get_fd_by_id_opts
is rejected by the verifier, and the log says:

   0: R1=ctx() R10=fp0
   ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
   0: (b7) r0 = 0                        ; R0_w=0
   1: (79) r2 = *(u64 *)(r1 +0)
   func 'bpf_lsm_bpf_map' arg0 has btf_id 916 type STRUCT 'bpf_map'
   2: R1=ctx() R2_w=trusted_ptr_bpf_map()
   ; if (map != (struct bpf_map *)&data_input) @ test_libbpf_get_fd_by_id_opts.c:29
   2: (18) r3 = 0xffff9742c0951a00       ; R3_w=map_ptr(map=data_input,ks=4,vs=4)
   4: (5d) if r2 != r3 goto pc+4         ; R2_w=trusted_ptr_bpf_map() R3_w=map_ptr(map=data_input,ks=4,vs=4)
   ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
   5: (79) r0 = *(u64 *)(r1 +8)          ; R0_w=scalar() R1=ctx()
   ; if (fmode & FMODE_WRITE) @ test_libbpf_get_fd_by_id_opts.c:32
   6: (67) r0 <<= 62                     ; R0_w=scalar(smax=0x4000000000000000,umax=0xc000000000000000,smin32=0,smax32=umax32=0,var_off=(0x0; 0xc000000000000000))
   7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
   ;  @ test_libbpf_get_fd_by_id_opts.c:0
   8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
   ; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
   9: (95) exit

And here is the C code of the prog.

SEC("lsm/bpf_map")
int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode)
{
	if (map != (struct bpf_map *)&data_input)
		return 0;

	if (fmode & FMODE_WRITE)
		return -EACCES;

	return 0;
}

It is clear that the prog can only return either 0 or -EACCESS, and both
values are legal.

So why is it rejected by the verifier?

The verifier log shows that the second if and return value setting
statements in the prog is optimized to bitwise operations "r0 s>>= 63"
and "r0 &= -13". The verifier correctly deduces that the the value of
r0 is in the range [-1, 0] after verifing instruction "r0 s>>= 63".
But when the verifier proceeds to verify instruction "r0 &= -13", it
fails to deduce the correct value range of r0.

7: (c7) r0 s>>= 63                    ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
8: (57) r0 &= -13                     ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))

So why the verifier fails to deduce the result of 'r0 &= -13'?

The verifier uses tnum to track values, and the two ranges "[-1, 0]" and
"[0, -1ULL]" are encoded to the same tnum. When verifing instruction
"r0 &= -13", the verifier erroneously deduces the result from
"[0, -1ULL] AND -13", which is out of the expected return range
[-4095, 0].

To fix it, this patch simply adds a special SCALAR32 case for the
verifier. That is, when the source operand of the AND instruction is
a constant and the destination operand changes from negative to
non-negative and falls in range [-256, 256], deduce the result range
by enumerating all possible AND results.

Signed-off-by: Xu Kuohai <xukuohai@xxxxxxxxxx>
---

Hello,

Sorry for the delay, I had to think about this issue a bit.
I found the clang transformation that generates the pattern this patch
tries to handle.
It is located in DAGCombiner::SimplifySelectCC() method (see [1]).
The transformation happens as a part of DAG to DAG rewrites
(LLVM uses several internal representations:
  - generic optimizer uses LLVM IR, most of the work is done
    using this representation;
  - before instruction selection IR is converted to Selection DAG,
    some optimizations are applied at this stage,
    all such optimizations are a set of pattern replacements;
  - Selection DAG is converted to machine code, some optimizations
    are applied at the machine code level).

Full pattern is described as follows:

   // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
   // where y is has a single bit set.
   // A plaintext description would be, we can turn the SELECT_CC into an AND
   // when the condition can be materialized as an all-ones register.  Any
   // single bit-test can be materialized as an all-ones register with
   // shift-left and shift-right-arith.

For this particular test case the DAG is converted as follows:

                     .---------------- lhs         The meaning of this select_cc is:
                     |        .------- rhs         `lhs == rhs ? true value : false value`
                     |        | .----- true value
                     |        | |  .-- false value
                     v        v v  v
   (select_cc seteq (and X 2) 0 0 -13)
                           ^
->                        '---------------.
   (and (sra (sll X 62) 63)                |
        -13)                               |
                                           |
Before pattern is applied, it checks that second 'and' operand has
only one bit set, (which is true for '2').

The pattern itself generates logical shift left / arithmetic shift
right pair, that ensures that result is either all ones (-1) or all
zeros (0). Hence, applying 'and' to shifts result and false value
generates a correct result.


Thanks for your detailed and invaluable explanation!

In my opinion the approach taken by this patch is sub-optimal:
- 512 iterations is too much;
- this does not cover all code that could be generated by the above
   mentioned LLVM transformation
   (e.g. second 'and' operand could be 1 << 16).

Instead, I suggest to make a special case for source or dst register
of '&=' operation being in range [-1,0].
Meaning that one of the '&=' operands is either:
- all ones, in which case the counterpart is the result of the operation;
- all zeros, in which case zero is the result of the operation;
- derive MIN and MAX values based on above two observations.


Totally agree, I'll cook a new patch as you suggested.

[1] https://github.com/llvm/llvm-project/blob/4523a267829c807f3fc8fab8e5e9613985a51565/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp#L5391

Best regards,
Eduard





[Index of Archives]     [Linux Wireless]     [Linux Kernel]     [ATH6KL]     [Linux Bluetooth]     [Linux Netdev]     [Kernel Newbies]     [Share Photos]     [IDE]     [Security]     [Git]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux ATA RAID]     [Samba]     [Device Mapper]

  Powered by Linux