From: Maxim Mikityanskiy <maxim@xxxxxxxxxxxxx> The previous commit fixed a verifier bypass by ensuring that ID is not preserved on narrowing spills. Add the test cases to check the problematic patterns. Signed-off-by: Maxim Mikityanskiy <maxim@xxxxxxxxxxxxx> --- .../selftests/bpf/progs/verifier_spill_fill.c | 198 ++++++++++++++++++ 1 file changed, 198 insertions(+) diff --git a/tools/testing/selftests/bpf/progs/verifier_spill_fill.c b/tools/testing/selftests/bpf/progs/verifier_spill_fill.c index 136e5530b72c..999677acc8ae 100644 --- a/tools/testing/selftests/bpf/progs/verifier_spill_fill.c +++ b/tools/testing/selftests/bpf/progs/verifier_spill_fill.c @@ -371,4 +371,202 @@ __naked void and_then_at_fp_8(void) " ::: __clobber_all); } +SEC("xdp") +__description("32-bit spill of 64-bit reg should clear ID") +__failure __msg("math between ctx pointer and 4294967295 is not allowed") +__naked void spill_32bit_of_64bit_fail(void) +{ + asm volatile (" \ + r6 = r1; \ + /* Roll one bit to force the verifier to track both branches. */\ + call %[bpf_get_prandom_u32]; \ + r0 &= 0x8; \ + /* Put a large number into r1. */ \ + r1 = 0xffffffff; \ + r1 <<= 32; \ + r1 += r0; \ + /* Assign an ID to r1. */ \ + r2 = r1; \ + /* 32-bit spill r1 to stack - should clear the ID! */\ + *(u32*)(r10 - 8) = r1; \ + /* 32-bit fill r2 from stack. */ \ + r2 = *(u32*)(r10 - 8); \ + /* Compare r2 with another register to trigger find_equal_scalars.\ + * Having one random bit is important here, otherwise the verifier cuts\ + * the corners. If the ID was mistakenly preserved on spill, this would\ + * cause the verifier to think that r1 is also equal to zero in one of\ + * the branches, and equal to eight on the other branch.\ + */ \ + r3 = 0; \ + if r2 != r3 goto l0_%=; \ +l0_%=: r1 >>= 32; \ + /* At this point, if the verifier thinks that r1 is 0, an out-of-bounds\ + * read will happen, because it actually contains 0xffffffff.\ + */ \ + r6 += r1; \ + r0 = *(u32*)(r6 + 0); \ + exit; \ +" : + : __imm(bpf_get_prandom_u32) + : __clobber_all); +} + +SEC("xdp") +__description("16-bit spill of 64-bit reg should clear ID") +__failure __msg("math between ctx pointer and 4294967295 is not allowed") +__naked void spill_16bit_of_64bit_fail(void) +{ + asm volatile (" \ + r6 = r1; \ + /* Roll one bit to force the verifier to track both branches. */\ + call %[bpf_get_prandom_u32]; \ + r0 &= 0x8; \ + /* Put a large number into r1. */ \ + r1 = 0xffffffff; \ + r1 <<= 32; \ + r1 += r0; \ + /* Assign an ID to r1. */ \ + r2 = r1; \ + /* 16-bit spill r1 to stack - should clear the ID! */\ + *(u16*)(r10 - 8) = r1; \ + /* 16-bit fill r2 from stack. */ \ + r2 = *(u16*)(r10 - 8); \ + /* Compare r2 with another register to trigger find_equal_scalars.\ + * Having one random bit is important here, otherwise the verifier cuts\ + * the corners. If the ID was mistakenly preserved on spill, this would\ + * cause the verifier to think that r1 is also equal to zero in one of\ + * the branches, and equal to eight on the other branch.\ + */ \ + r3 = 0; \ + if r2 != r3 goto l0_%=; \ +l0_%=: r1 >>= 32; \ + /* At this point, if the verifier thinks that r1 is 0, an out-of-bounds\ + * read will happen, because it actually contains 0xffffffff.\ + */ \ + r6 += r1; \ + r0 = *(u32*)(r6 + 0); \ + exit; \ +" : + : __imm(bpf_get_prandom_u32) + : __clobber_all); +} + +SEC("xdp") +__description("8-bit spill of 64-bit reg should clear ID") +__failure __msg("math between ctx pointer and 4294967295 is not allowed") +__naked void spill_8bit_of_64bit_fail(void) +{ + asm volatile (" \ + r6 = r1; \ + /* Roll one bit to force the verifier to track both branches. */\ + call %[bpf_get_prandom_u32]; \ + r0 &= 0x8; \ + /* Put a large number into r1. */ \ + r1 = 0xffffffff; \ + r1 <<= 32; \ + r1 += r0; \ + /* Assign an ID to r1. */ \ + r2 = r1; \ + /* 8-bit spill r1 to stack - should clear the ID! */\ + *(u8*)(r10 - 8) = r1; \ + /* 8-bit fill r2 from stack. */ \ + r2 = *(u8*)(r10 - 8); \ + /* Compare r2 with another register to trigger find_equal_scalars.\ + * Having one random bit is important here, otherwise the verifier cuts\ + * the corners. If the ID was mistakenly preserved on spill, this would\ + * cause the verifier to think that r1 is also equal to zero in one of\ + * the branches, and equal to eight on the other branch.\ + */ \ + r3 = 0; \ + if r2 != r3 goto l0_%=; \ +l0_%=: r1 >>= 32; \ + /* At this point, if the verifier thinks that r1 is 0, an out-of-bounds\ + * read will happen, because it actually contains 0xffffffff.\ + */ \ + r6 += r1; \ + r0 = *(u32*)(r6 + 0); \ + exit; \ +" : + : __imm(bpf_get_prandom_u32) + : __clobber_all); +} + +SEC("xdp") +__description("16-bit spill of 32-bit reg should clear ID") +__failure __msg("dereference of modified ctx ptr R6 off=65535 disallowed") +__naked void spill_16bit_of_32bit_fail(void) +{ + asm volatile (" \ + r6 = r1; \ + /* Roll one bit to force the verifier to track both branches. */\ + call %[bpf_get_prandom_u32]; \ + r0 &= 0x8; \ + /* Put a large number into r1. */ \ + w1 = 0xffff0000; \ + r1 += r0; \ + /* Assign an ID to r1. */ \ + r2 = r1; \ + /* 16-bit spill r1 to stack - should clear the ID! */\ + *(u16*)(r10 - 8) = r1; \ + /* 16-bit fill r2 from stack. */ \ + r2 = *(u16*)(r10 - 8); \ + /* Compare r2 with another register to trigger find_equal_scalars.\ + * Having one random bit is important here, otherwise the verifier cuts\ + * the corners. If the ID was mistakenly preserved on spill, this would\ + * cause the verifier to think that r1 is also equal to zero in one of\ + * the branches, and equal to eight on the other branch.\ + */ \ + r3 = 0; \ + if r2 != r3 goto l0_%=; \ +l0_%=: r1 >>= 16; \ + /* At this point, if the verifier thinks that r1 is 0, an out-of-bounds\ + * read will happen, because it actually contains 0xffff.\ + */ \ + r6 += r1; \ + r0 = *(u32*)(r6 + 0); \ + exit; \ +" : + : __imm(bpf_get_prandom_u32) + : __clobber_all); +} + +SEC("xdp") +__description("8-bit spill of 32-bit reg should clear ID") +__failure __msg("dereference of modified ctx ptr R6 off=65535 disallowed") +__naked void spill_8bit_of_32bit_fail(void) +{ + asm volatile (" \ + r6 = r1; \ + /* Roll one bit to force the verifier to track both branches. */\ + call %[bpf_get_prandom_u32]; \ + r0 &= 0x8; \ + /* Put a large number into r1. */ \ + w1 = 0xffff0000; \ + r1 += r0; \ + /* Assign an ID to r1. */ \ + r2 = r1; \ + /* 8-bit spill r1 to stack - should clear the ID! */\ + *(u8*)(r10 - 8) = r1; \ + /* 8-bit fill r2 from stack. */ \ + r2 = *(u8*)(r10 - 8); \ + /* Compare r2 with another register to trigger find_equal_scalars.\ + * Having one random bit is important here, otherwise the verifier cuts\ + * the corners. If the ID was mistakenly preserved on spill, this would\ + * cause the verifier to think that r1 is also equal to zero in one of\ + * the branches, and equal to eight on the other branch.\ + */ \ + r3 = 0; \ + if r2 != r3 goto l0_%=; \ +l0_%=: r1 >>= 16; \ + /* At this point, if the verifier thinks that r1 is 0, an out-of-bounds\ + * read will happen, because it actually contains 0xffff.\ + */ \ + r6 += r1; \ + r0 = *(u32*)(r6 + 0); \ + exit; \ +" : + : __imm(bpf_get_prandom_u32) + : __clobber_all); +} + char _license[] SEC("license") = "GPL"; -- 2.40.1