On Mon, Dec 19, 2022 at 7:16 PM Rae Moar <rmoar@xxxxxxxxxx> wrote: > > Add a KUnit test for the kernel hashtable implementation in > include/linux/hashtable.h. > > Note that this version does not yet test each of the rcu > alternative versions of functions. > > Signed-off-by: Rae Moar <rmoar@xxxxxxxxxx> Looks pretty good from a cursory glance. Had some mostly stylistic nits/suggestions below. > --- > > Note: The check patch script is outputting open brace errors on lines > 154, 186, 231 of lib/hashtable_test.c but I believe the format of the > braces on those lines is consistent with the Linux Kernel style guide. > Will continue to look at these errors. > > lib/Kconfig.debug | 13 ++ > lib/Makefile | 1 + > lib/hashtable_test.c | 299 +++++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 313 insertions(+) > create mode 100644 lib/hashtable_test.c > > diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug > index 3fc7abffc7aa..3cf3b6f8cff4 100644 > --- a/lib/Kconfig.debug > +++ b/lib/Kconfig.debug > @@ -2458,6 +2458,19 @@ config LIST_KUNIT_TEST > > If unsure, say N. > > +config HASHTABLE_KUNIT_TEST > + tristate "KUnit Test for Kernel Hashtable structures" if !KUNIT_ALL_TESTS > + depends on KUNIT > + default KUNIT_ALL_TESTS > + help > + This builds the hashtable KUnit test suite. > + It tests the API and basic functionality of the functions > + and associated macros defined in include/linux/hashtable.h. nit: the "functions and associated macros" == "the API", so perhaps we can shorten this a bit. > + For more information on KUnit and unit tests in general please refer > + to the KUnit documentation in Documentation/dev-tools/kunit/. > + > + If unsure, say N. > + > config LINEAR_RANGES_TEST > tristate "KUnit test for linear_ranges" > depends on KUNIT > diff --git a/lib/Makefile b/lib/Makefile > index 161d6a724ff7..9036d3aeee0a 100644 > --- a/lib/Makefile > +++ b/lib/Makefile > @@ -370,6 +370,7 @@ obj-$(CONFIG_PLDMFW) += pldmfw/ > CFLAGS_bitfield_kunit.o := $(DISABLE_STRUCTLEAK_PLUGIN) > obj-$(CONFIG_BITFIELD_KUNIT) += bitfield_kunit.o > obj-$(CONFIG_LIST_KUNIT_TEST) += list-test.o > +obj-$(CONFIG_HASHTABLE_KUNIT_TEST) += hashtable_test.o > obj-$(CONFIG_LINEAR_RANGES_TEST) += test_linear_ranges.o > obj-$(CONFIG_BITS_TEST) += test_bits.o > obj-$(CONFIG_CMDLINE_KUNIT_TEST) += cmdline_kunit.o > diff --git a/lib/hashtable_test.c b/lib/hashtable_test.c > new file mode 100644 > index 000000000000..7907df66a8e7 > --- /dev/null > +++ b/lib/hashtable_test.c > @@ -0,0 +1,299 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * KUnit test for the Kernel Hashtable structures. > + * > + * Copyright (C) 2022, Google LLC. > + * Author: Rae Moar <rmoar@xxxxxxxxxx> > + */ > +#include <kunit/test.h> > + > +#include <linux/hashtable.h> > + > +struct hashtable_test_entry { > + int key; > + int data; > + struct hlist_node node; > + int visited; > +}; > + > +static void hashtable_test_hash_init(struct kunit *test) > +{ > + /* Test the different ways of initialising a hashtable. */ > + DEFINE_HASHTABLE(hash1, 3); > + DECLARE_HASHTABLE(hash2, 3); > + > + hash_init(hash1); > + hash_init(hash2); > + > + KUNIT_EXPECT_TRUE(test, hash_empty(hash1)); > + KUNIT_EXPECT_TRUE(test, hash_empty(hash2)); > +} > + > +static void hashtable_test_hash_empty(struct kunit *test) > +{ > + struct hashtable_test_entry a; > + DEFINE_HASHTABLE(hash, 3); > + > + hash_init(hash); > + KUNIT_EXPECT_TRUE(test, hash_empty(hash)); > + > + a.key = 1; > + a.data = 13; > + hash_add(hash, &a.node, a.key); > + > + /* Hashtable should no longer be empty. */ > + KUNIT_EXPECT_FALSE(test, hash_empty(hash)); > +} > + > +static void hashtable_test_hash_hashed(struct kunit *test) > +{ > + struct hashtable_test_entry a, b; > + DEFINE_HASHTABLE(hash, 3); > + > + hash_init(hash); > + a.key = 1; > + a.data = 13; > + b.key = 1; > + b.data = 2; > + > + hash_add(hash, &a.node, a.key); > + hash_add(hash, &b.node, b.key); > + > + KUNIT_EXPECT_TRUE(test, hash_hashed(&a.node)); > + KUNIT_EXPECT_TRUE(test, hash_hashed(&b.node)); > +} > + > +static void hashtable_test_hash_add(struct kunit *test) > +{ > + struct hashtable_test_entry a, b, *x; > + int bkt; > + DEFINE_HASHTABLE(hash, 3); > + > + hash_init(hash); > + a.key = 1; > + a.data = 13; > + a.visited = 0; > + b.key = 2; > + b.data = 10; > + b.visited = 0; > + > + hash_add(hash, &a.node, a.key); > + hash_add(hash, &b.node, b.key); > + > + hash_for_each(hash, bkt, x, node) { > + if (x->key == a.key && x->data == a.data) > + a.visited += 1; > + if (x->key == b.key && x->data == b.data) > + b.visited += 1; > + } x->visited += 1; or x->visited++; also do the same thing. Note: given x is supposed to point to a or b, I don't know if checking against a.data does us much good. If we're trying to check that hash_add() doesn't mutate the keys and data, this code won't catch it. We'd have to instead do something like if(x->key != 1 && x->key != 2) KUNIT_FAIL(test, ...); > + > + /* Both entries should have been visited exactly once. */ > + KUNIT_EXPECT_EQ(test, a.visited, 1); > + KUNIT_EXPECT_EQ(test, b.visited, 1); > +} > + > +static void hashtable_test_hash_del(struct kunit *test) > +{ > + struct hashtable_test_entry a, b, *x; > + DEFINE_HASHTABLE(hash, 3); > + > + hash_init(hash); > + a.key = 1; > + a.data = 13; > + b.key = 2; > + b.data = 10; > + b.visited = 0; > + > + hash_add(hash, &a.node, a.key); > + hash_add(hash, &b.node, b.key); > + > + hash_del(&b.node); > + hash_for_each_possible(hash, x, node, b.key) { > + if (x->key == b.key && x->data == b.data) > + b.visited += 1; Similarly to above, x->visited += 1 (or ++) is probably better. > + } > + > + /* The deleted entry should not have been visited. */ > + KUNIT_EXPECT_EQ(test, b.visited, 0); > + > + hash_del(&a.node); > + > + /* The hashtable should be empty. */ > + KUNIT_EXPECT_TRUE(test, hash_empty(hash)); > +} > + > +static void hashtable_test_hash_for_each(struct kunit *test) > +{ > + struct hashtable_test_entry entries[3]; > + struct hashtable_test_entry *x; > + int bkt, i, j, count; > + DEFINE_HASHTABLE(hash, 3); > + > + /* Initialize a hashtable with three entries. */ > + hash_init(hash); > + for (i = 0; i < 3; i++) { > + entries[i].key = i; > + entries[i].data = i + 10; > + entries[i].visited = 0; > + hash_add(hash, &entries[i].node, entries[i].key); > + } > + > + count = 0; > + hash_for_each(hash, bkt, x, node) { > + if (x->key >= 0 && x->key < 3) > + entries[x->key].visited += 1; Would this be better using an assert to fail the test if we see unexpected keys? E.g. like if (x->key < 0 || x->key > 3) KUNIT_ASSERT_FAILURE(test, ...); x->visited++; count++; or KUNIT_ASSERT_GE(test, x->key, 0); KUNIT_ASSERT_LT(test, x->key, 3); > + count++; > + } > + > + /* Should have visited each entry exactly once. */ > + KUNIT_EXPECT_EQ(test, count, 3); > + for (j = 0; j < 3; j++) > + KUNIT_EXPECT_EQ(test, entries[j].visited, 1); > +} > + > +static void hashtable_test_hash_for_each_safe(struct kunit *test) > +{ > + struct hashtable_test_entry entries[3]; > + struct hashtable_test_entry *x; > + struct hlist_node *tmp; > + int bkt, i, j, count; > + DEFINE_HASHTABLE(hash, 3); > + > + /* Initialize a hashtable with three entries. */ > + hash_init(hash); > + for (i = 0; i < 3; i++) { > + entries[i].key = i; > + entries[i].data = i + 10; > + entries[i].visited = 0; > + hash_add(hash, &entries[i].node, entries[i].key); > + } > + > + count = 0; > + hash_for_each_safe(hash, bkt, tmp, x, node) { > + if (x->key >= 0 && x->key < 3) { > + entries[x->key].visited += 1; > + hash_del(&entries[x->key].node); > + } > + count++; > + } > + > + /* Should have visited each entry exactly once. */ > + KUNIT_EXPECT_EQ(test, count, 3); > + for (j = 0; j < 3; j++) > + KUNIT_EXPECT_EQ(test, entries[j].visited, 1); > +} > + > +static void hashtable_test_hash_for_each_possible(struct kunit *test) > +{ > + struct hashtable_test_entry entries[4]; > + struct hashtable_test_entry *x; > + int i, j, count; > + DEFINE_HASHTABLE(hash, 3); > + > + /* Initialize a hashtable with three entries with key = 1. */ > + hash_init(hash); > + for (i = 0; i < 3; i++) { > + entries[i].key = 1; > + entries[i].data = i; > + entries[i].visited = 0; > + hash_add(hash, &entries[i].node, entries[i].key); > + } > + > + /* Add an entry with key = 2. */ > + entries[3].key = 2; > + entries[3].data = 3; > + entries[3].visited = 0; > + hash_add(hash, &entries[3].node, entries[3].key); > + > + count = 0; > + hash_for_each_possible(hash, x, node, 1) { > + if (x->data >= 0 && x->data < 4) > + entries[x->data].visited += 1; > + count++; > + } > + > + /* Should have visited each entry with key = 1 exactly once. */ > + for (j = 0; j < 3; j++) > + KUNIT_EXPECT_EQ(test, entries[j].visited, 1); > + > + /* If entry with key = 2 is in the same bucket as the entries with > + * key = 1, check it was visited. Otherwise ensure that only three > + * entries were visited. > + */ > + if (hash_min(1, HASH_BITS(hash)) == hash_min(2, HASH_BITS(hash))) { nit: this feels like we might be a bit too tied to the impl (not sure if it'll change anytime soon, but still). Could we check the bucket using hash_for_each? E.g. // assume we change the keys from {1,2} to {0,1} int buckets[2]; hash_for_each(hash, bkt, x, node) { buckets[x->key] = bkt; } if (buckets[0] == buckets[1]) { // all in the same bucket ... } else { ... } > + KUNIT_EXPECT_EQ(test, count, 4); > + KUNIT_EXPECT_EQ(test, entries[3].visited, 1); > + } else { > + KUNIT_EXPECT_EQ(test, count, 3); should we also check that entries[3].visited == 0? Daniel