On Tue, Nov 13, 2018 at 11:40:09PM +0200, Jarkko Sakkinen wrote: > Add a selftest for SGX. It is a trivial test where a simple enclave > copies one 64-bit word of memory between two memory locations given to > the enclave as arguments. > > Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@xxxxxxxxxxxxxxx> > --- > +SUBDIRS_64 := sgx > +ASSERT(!DEFINED(.altinstructions), "ALTERNATIVES are not supported in the SGX LE") > +ASSERT(!DEFINED(.altinstr_replacement), "ALTERNATIVES are not supported in the SGX LE") > +ASSERT(!DEFINED(.discard.retpoline_safe), "RETPOLINE ALTERNATIVES are not supported in the SGX LE") > +ASSERT(!DEFINED(.discard.nospec), "RETPOLINE ALTERNATIVES are not supported in the SGX LE") Maybe this? s/LE/Test Enclave > diff --git a/tools/testing/selftests/x86/sgx/encl_bootstrap.S b/tools/testing/selftests/x86/sgx/encl_bootstrap.S > new file mode 100644 > index 000000000000..62251c7d9927 > --- /dev/null > +++ b/tools/testing/selftests/x86/sgx/encl_bootstrap.S > @@ -0,0 +1,94 @@ > +/* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */ > +/* > + * Copyright(c) 2016-18 Intel Corporation. > + */ > + > + .macro ENCLU > + .byte 0x0f, 0x01, 0xd7 > + .endm > + > + .section ".tcs", "a" > + .balign 4096 > + > + .fill 1, 8, 0 # STATE (set by CPU) > + .fill 1, 8, 0 # FLAGS > + .long encl_ssa # OSSA Any reason not to do .quad for OSSA and OENTRY? > + .fill 1, 4, 0 > + .fill 1, 4, 0 # CSSA (set by CPU) > + .fill 1, 4, 1 # NSSA > + .long encl_entry # OENTRY > + .fill 1, 4, 0 > + .fill 1, 8, 0 # AEP (set by EENTER and ERESUME) > + .fill 1, 8, 0 # OFSBASE > + .fill 1, 8, 0 # OGSBASE > + .fill 1, 4, 0xFFFFFFFF # FSLIMIT > + .fill 1, 4, 0xFFFFFFFF # GSLIMIT > + .fill 503, 8, 0 # Reserved I'd prefer to do 1-byte fill with a size of 4024 to match the SDM. > + > + .text > + > +encl_entry: > + # %rbx contains the base address for TCS, which is also the first > + # address inside the enclave. By adding $le_stack_end to it, we get the > + # absolute address for the stack. > + lea (encl_stack)(%rbx), %rax > + xchg %rsp, %rax > + push %rax > + > + push %rcx # push the address after EENTER > + push %rbx # push the enclave base address > + > + call encl_body > + > + pop %rbx # pop the enclave base address > + > + # Restore XSAVE registers to a synthetic state. > + mov $0xFFFFFFFF, %rax > + mov $0xFFFFFFFF, %rdx > + lea (xsave_area)(%rbx), %rdi > + fxrstor (%rdi) > + > + # Clear GPRs > + xor %rcx, %rcx > + xor %rdx, %rdx > + xor %rdi, %rdi > + xor %rsi, %rsi > + xor %r8, %r8 > + xor %r9, %r9 > + xor %r10, %r10 > + xor %r11, %r11 > + xor %r12, %r12 > + xor %r13, %r13 > + xor %r14, %r14 > + xor %r15, %r15 > + > + # Reset status flags > + add %rdx, %rdx # OF = SF = AF = CF = 0; ZF = PF = 1 > + > + pop %rbx # pop the address after EENTER Probably worth expanding the comment to explain that ENCLU[EEXIT] takes the target address via %rbx, i.e. we're "returning" from the EENTER "call". > + > + # Restore the caller stack. > + pop %rax > + mov %rax, %rsp > + > + # EEXIT > + mov $4, %rax > + enclu > + > + .section ".data", "aw" > + > +encl_ssa: > + .space 4096 > + > +xsave_area: > + .fill 1, 4, 0x037F # FCW > + .fill 5, 4, 0 > + .fill 1, 4, 0x1F80 # MXCSR > + .fill 1, 4, 0xFFFF # MXCSR_MASK > + .fill 123, 4, 0 > + .fill 1, 4, 0x80000000 # XCOMP_BV[63] = 1, compaction mode > + .fill 12, 4, 0 > + > + .balign 4096 > + .space 8192 > +encl_stack: