drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:363:64: sparse: incorrect type in argument 3 (different base types)

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi Vipul,

FYI, there are new sparse warnings show up in

commit: 5afc8b84eb7b29e4646d6e8ca7e6d7196031d6f7  cxgb4: Add functions to read memory via PCIE memory window

  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:361:33: sparse: incorrect type in assignment (different base types)
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:361:33:    expected restricted __be32 [usertype] <noident>
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:361:33:    got unsigned int
+ drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:363:64: sparse: incorrect type in argument 3 (different base types)
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:363:64:    expected unsigned int [unsigned] [usertype] val
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:363:64:    got restricted __be32 [usertype] <noident>
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:694:31: sparse: incorrect type in assignment (different base types)
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:694:31:    expected unsigned int [unsigned] [usertype] <noident>
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:694:31:    got restricted __be32 [usertype] <noident>
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:898:25: sparse: cast to restricted __be32
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:2177:25: sparse: incorrect type in assignment (different base types)
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:2177:25:    expected restricted __be32 [usertype] <noident>
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:2177:25:    got unsigned int
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c: In function 't4_memory_rw.constprop.6':
  drivers/net/ethernet/chelsio/cxgb4/t4_hw.c:462:1: warning: the frame size of 2056 bytes is larger than 1024 bytes [-Wframe-larger-than=]

vim +363 drivers/net/ethernet/chelsio/cxgb4/t4_hw.c

5afc8b84 (Vipul Pandya 2012-09-26  347) 
5afc8b84 (Vipul Pandya 2012-09-26  348) 	/*
5afc8b84 (Vipul Pandya 2012-09-26  349) 	 * Setup offset into PCIE memory window.  Address must be a
5afc8b84 (Vipul Pandya 2012-09-26  350) 	 * MEMWIN0_APERTURE-byte-aligned address.  (Read back MA register to
5afc8b84 (Vipul Pandya 2012-09-26  351) 	 * ensure that changes propagate before we attempt to use the new
5afc8b84 (Vipul Pandya 2012-09-26  352) 	 * values.)
5afc8b84 (Vipul Pandya 2012-09-26  353) 	 */
5afc8b84 (Vipul Pandya 2012-09-26  354) 	t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
5afc8b84 (Vipul Pandya 2012-09-26  355) 		     addr & ~(MEMWIN0_APERTURE - 1));
5afc8b84 (Vipul Pandya 2012-09-26  356) 	t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
5afc8b84 (Vipul Pandya 2012-09-26  357) 
5afc8b84 (Vipul Pandya 2012-09-26  358) 	/* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
5afc8b84 (Vipul Pandya 2012-09-26  359) 	for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
5afc8b84 (Vipul Pandya 2012-09-26  360) 		if (dir)
5afc8b84 (Vipul Pandya 2012-09-26  361) 			*data++ = t4_read_reg(adap, (MEMWIN0_BASE + i));
5afc8b84 (Vipul Pandya 2012-09-26  362) 		else
5afc8b84 (Vipul Pandya 2012-09-26 @363) 			t4_write_reg(adap, (MEMWIN0_BASE + i), *data++);
5afc8b84 (Vipul Pandya 2012-09-26  364) 	}
5afc8b84 (Vipul Pandya 2012-09-26  365) 
5afc8b84 (Vipul Pandya 2012-09-26  366) 	return 0;
5afc8b84 (Vipul Pandya 2012-09-26  367) }
5afc8b84 (Vipul Pandya 2012-09-26  368) 
5afc8b84 (Vipul Pandya 2012-09-26  369) /**
5afc8b84 (Vipul Pandya 2012-09-26  370)  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
5afc8b84 (Vipul Pandya 2012-09-26  371)  *	@adap: the adapter

---
0-DAY kernel build testing backend         Open Source Technology Centre
Fengguang Wu, Yuanhan Liu                              Intel Corporation
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/init.h>
#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4fw_api.h"

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
		  asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
		  ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
 *	t4_wr_mbox_meat - send a command to FW through the given mailbox
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
{
	static const int delay[] = {
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

	v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
		v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

	t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
		if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID)) {
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
			if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
				fw_asrt(adap, data_reg);
				res = FW_CMD_RETVAL(EIO);
			} else if (rpl)
				get_mbox_rpl(adap, rpl, size / 8, data_reg);

			if (FW_CMD_RETVAL_GET((int)res))
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
			return -FW_CMD_RETVAL_GET((int)res);
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
	return -ETIMEDOUT;
}

/**
 *	t4_mc_read - read from MC through backdoor accesses
 *	@adap: the adapter
 *	@addr: address of first byte requested
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
{
	int i;

	if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
		return -EBUSY;
	t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
	t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
	t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
	t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
		     BIST_CMD_GAP(1));
	i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
	if (i)
		return i;

#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
	return 0;
}

/**
 *	t4_edc_read - read from EDC through backdoor accesses
 *	@adap: the adapter
 *	@idx: which EDC to access
 *	@addr: address of first byte requested
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
	int i;

	idx *= EDC_STRIDE;
	if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
		return -EBUSY;
	t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
	t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
	t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
	t4_write_reg(adap, EDC_BIST_CMD + idx,
		     BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
	i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
	if (i)
		return i;

#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
	return 0;
}

/*
 *	t4_mem_win_rw - read/write memory through PCIE memory window
 *	@adap: the adapter
 *	@addr: address of first byte requested
 *	@data: MEMWIN0_APERTURE bytes of data containing the requested address
 *	@dir: direction of transfer 1 => read, 0 => write
 *
 *	Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
 *	MEMWIN0_APERTURE-byte-aligned address that covers the requested
 *	address @addr.
 */
static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
{
	int i;

	/*
	 * Setup offset into PCIE memory window.  Address must be a
	 * MEMWIN0_APERTURE-byte-aligned address.  (Read back MA register to
	 * ensure that changes propagate before we attempt to use the new
	 * values.)
	 */
	t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
		     addr & ~(MEMWIN0_APERTURE - 1));
	t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);

	/* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
	for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
		if (dir)
			*data++ = t4_read_reg(adap, (MEMWIN0_BASE + i));
		else
			t4_write_reg(adap, (MEMWIN0_BASE + i), *data++);
	}

	return 0;
}

/**
 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 *	@adap: the adapter
 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 *	@addr: address within indicated memory type
 *	@len: amount of memory to transfer
 *	@buf: host memory buffer
 *	@dir: direction of transfer 1 => read, 0 => write
 *
 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
 *	firmware memory address, length and host buffer must be aligned on
 *	32-bit boudaries.  The memory is transferred as a raw byte sequence
 *	from/to the firmware's memory.  If this memory contains data
 *	structures which contain multi-byte integers, it's the callers
 *	responsibility to perform appropriate byte order conversions.
 */
static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
			__be32 *buf, int dir)
{
	u32 pos, start, end, offset, memoffset;
	int ret;

	/*
	 * Argument sanity checks ...
	 */
	if ((addr & 0x3) || (len & 0x3))
		return -EINVAL;

	/*
	 * Offset into the region of memory which is being accessed
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
	 * MEM_MC   = 2
	 */
	memoffset = (mtype * (5 * 1024 * 1024));

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

	/*
	 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
	 * at a time so we need to round down the start and round up the end.
	 * We'll start copying out of the first line at (addr - start) a word
	 * at a time.
	 */
	start = addr & ~(MEMWIN0_APERTURE-1);
	end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
	offset = (addr - start)/sizeof(__be32);

	for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
		__be32 data[MEMWIN0_APERTURE/sizeof(__be32)];

		/*
		 * If we're writing, copy the data from the caller's memory
		 * buffer
		 */
		if (!dir) {
			/*
			 * If we're doing a partial write, then we need to do
			 * a read-modify-write ...
			 */
			if (offset || len < MEMWIN0_APERTURE) {
				ret = t4_mem_win_rw(adap, pos, data, 1);
				if (ret)
					return ret;
			}
			while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
			       len > 0) {
				data[offset++] = *buf++;
				len -= sizeof(__be32);
			}
		}

		/*
		 * Transfer a block of memory and bail if there's an error.
		 */
		ret = t4_mem_win_rw(adap, pos, data, dir);
		if (ret)
			return ret;

		/*
		 * If we're reading, copy the data into the caller's memory
		 * buffer.
		 */
		if (dir)
			while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
			       len > 0) {
				*buf++ = data[offset++];
				len -= sizeof(__be32);
			}
	}

	return 0;
}

int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
		    __be32 *buf)
{
	return t4_memory_rw(adap, mtype, addr, len, buf, 0);
}

#define EEPROM_STAT_ADDR   0x7bfc
#define VPD_BASE           0
#define VPD_LEN            512

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
 *	get_vpd_params - read VPD parameters from VPD EEPROM
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
	int i, ret;
	int ec, sn;
	u8 vpd[VPD_LEN], csum;
	unsigned int vpdr_len, kw_offset, id_len;

	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
	if (ret < 0)
		return ret;

	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
		return -EINVAL;
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
		return -EINVAL;
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
		return -EINVAL;
	}

#define FIND_VPD_KW(var, name) do { \
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
		return -EINVAL; \
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
		return -EINVAL;
	}

	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
#undef FIND_VPD_KW

	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
	strim(p->id);
	memcpy(p->ec, vpd + ec, EC_LEN);
	strim(p->ec);
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
	strim(p->sn);
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
	SF_RD_ID        = 0x9f,       /* read ID */
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

	FW_MAX_SIZE = 512 * 1024,
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, SF_OP) & BUSY)
		return -EBUSY;
	cont = cont ? SF_CONT : 0;
	lock = lock ? SF_LOCK : 0;
	t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
	if (!ret)
		*valp = t4_read_reg(adapter, SF_DATA);
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, SF_OP) & BUSY)
		return -EBUSY;
	cont = cont ? SF_CONT : 0;
	lock = lock ? SF_LOCK : 0;
	t4_write_reg(adapter, SF_DATA, val);
	t4_write_reg(adapter, SF_OP, lock |
		     cont | BYTECNT(byte_cnt - 1) | OP_WR);
	return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
 *	natural endianess.
 */
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
			 unsigned int nwords, u32 *data, int byte_oriented)
{
	int ret;

	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
			t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
		if (ret)
			return ret;
		if (byte_oriented)
			*data = htonl(*data);
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
	ret = flash_wait_op(adapter, 8, 1);
	if (ret)
		goto unlock;

	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
	return ret;
}

/**
 *	get_fw_version - read the firmware version
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
static int get_fw_version(struct adapter *adapter, u32 *vers)
{
	return t4_read_flash(adapter, adapter->params.sf_fw_start +
			     offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
}

/**
 *	get_tp_version - read the TP microcode version
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
static int get_tp_version(struct adapter *adapter, u32 *vers)
{
	return t4_read_flash(adapter, adapter->params.sf_fw_start +
			     offsetof(struct fw_hdr, tp_microcode_ver),
			     1, vers, 0);
}

/**
 *	t4_check_fw_version - check if the FW is compatible with this driver
 *	@adapter: the adapter
 *
 *	Checks if an adapter's FW is compatible with the driver.  Returns 0
 *	if there's exact match, a negative error if the version could not be
 *	read or there's a major version mismatch, and a positive value if the
 *	expected major version is found but there's a minor version mismatch.
 */
int t4_check_fw_version(struct adapter *adapter)
{
	u32 api_vers[2];
	int ret, major, minor, micro;

	ret = get_fw_version(adapter, &adapter->params.fw_vers);
	if (!ret)
		ret = get_tp_version(adapter, &adapter->params.tp_vers);
	if (!ret)
		ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
				    offsetof(struct fw_hdr, intfver_nic),
				    2, api_vers, 1);
	if (ret)
		return ret;

	major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
	minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
	micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
	memcpy(adapter->params.api_vers, api_vers,
	       sizeof(adapter->params.api_vers));

	if (major != FW_VERSION_MAJOR) {            /* major mismatch - fail */
		dev_err(adapter->pdev_dev,
			"card FW has major version %u, driver wants %u\n",
			major, FW_VERSION_MAJOR);
		return -EINVAL;
	}

	if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
		return 0;                                   /* perfect match */

	/* Minor/micro version mismatch.  Report it but often it's OK. */
	return 1;
}

/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
	t4_write_reg(adapter, SF_OP, 0);    /* unlock SF */
	return ret;
}

/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
	const u32 *p = (const u32 *)fw_data;
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
	if (ntohs(hdr->len512) * 512 != size) {
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
		csum += ntohl(p[i]);

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
	if (ret)
		goto out;

	addr = fw_img_start;
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
	return ret;
}

#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)

/**
 *	t4_link_start - apply link configuration to MAC/PHY
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
		  struct link_config *lc)
{
	struct fw_port_cmd c;
	unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
	c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
			       FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
				  FW_LEN16(c));

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
			       FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
				  FW_LEN16(c));
	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

typedef void (*int_handler_t)(struct adapter *adap);

struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
	int_handler_t int_handler; /* platform-specific int handler */
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
 *	interrupts described by the mask have occurred.  The actions include
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
		if (acts->int_handler)
			acts->int_handler(adapter);
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
	static const struct intr_info sysbus_intr_info[] = {
		{ RNPP, "RXNP array parity error", -1, 1 },
		{ RPCP, "RXPC array parity error", -1, 1 },
		{ RCIP, "RXCIF array parity error", -1, 1 },
		{ RCCP, "Rx completions control array parity error", -1, 1 },
		{ RFTP, "RXFT array parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info pcie_port_intr_info[] = {
		{ TPCP, "TXPC array parity error", -1, 1 },
		{ TNPP, "TXNP array parity error", -1, 1 },
		{ TFTP, "TXFT array parity error", -1, 1 },
		{ TCAP, "TXCA array parity error", -1, 1 },
		{ TCIP, "TXCIF array parity error", -1, 1 },
		{ RCAP, "RXCA array parity error", -1, 1 },
		{ OTDD, "outbound request TLP discarded", -1, 1 },
		{ RDPE, "Rx data parity error", -1, 1 },
		{ TDUE, "Tx uncorrectable data error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info pcie_intr_info[] = {
		{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter,
				    PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
				    sysbus_intr_info) +
	      t4_handle_intr_status(adapter,
				    PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
				    pcie_port_intr_info) +
	      t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
	static const struct intr_info tp_intr_info[] = {
		{ 0x3fffffff, "TP parity error", -1, 1 },
		{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;

	static const struct intr_info sge_intr_info[] = {
		{ ERR_CPL_EXCEED_IQE_SIZE,
		  "SGE received CPL exceeding IQE size", -1, 1 },
		{ ERR_INVALID_CIDX_INC,
		  "SGE GTS CIDX increment too large", -1, 0 },
		{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
		{ DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
		{ DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
		{ ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
		{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
		{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
		  0 },
		{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
		  0 },
		{ ERR_ING_CTXT_PRIO,
		  "SGE too many priority ingress contexts", -1, 0 },
		{ ERR_EGR_CTXT_PRIO,
		  "SGE too many priority egress contexts", -1, 0 },
		{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
		{ 0 }
	};

	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
				(unsigned long long)v);
		t4_write_reg(adapter, SGE_INT_CAUSE1, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
	}

	if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
	    v != 0)
		t4_fatal_err(adapter);
}

/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
	static const struct intr_info cim_intr_info[] = {
		{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
		{ OBQPARERR, "CIM OBQ parity error", -1, 1 },
		{ IBQPARERR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info cim_upintr_info[] = {
		{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT, "CIM illegal write", -1, 1 },
		{ ILLRDINT, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
				    cim_intr_info) +
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
	static const struct intr_info ulprx_intr_info[] = {
		{ 0x1800000, "ULPRX context error", -1, 1 },
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
	static const struct intr_info ulptx_intr_info[] = {
		{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
		  0 },
		{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
	static const struct intr_info pmtx_intr_info[] = {
		{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
		{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
		{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
	static const struct intr_info pmrx_intr_info[] = {
		{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
		{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
		{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
	static const struct intr_info cplsw_intr_info[] = {
		{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
	static const struct intr_info le_intr_info[] = {
		{ LIPMISS, "LE LIP miss", -1, 0 },
		{ LIP0, "LE 0 LIP error", -1, 0 },
		{ PARITYERR, "LE parity error", -1, 1 },
		{ UNKNOWNCMD, "LE unknown command", -1, 1 },
		{ REQQPARERR, "LE request queue parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
	static const struct intr_info mps_rx_intr_info[] = {
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_tx_intr_info[] = {
		{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
		{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
		{ BUBBLE, "MPS Tx underflow", -1, 1 },
		{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR, "MPS Tx framing error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_trc_intr_info[] = {
		{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
		{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_stat_sram_intr_info[] = {
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_stat_tx_intr_info[] = {
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_stat_rx_intr_info[] = {
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
	static const struct intr_info mps_cls_intr_info[] = {
		{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
		{ 0 }
	};

	int fat;

	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
				    mps_rx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
				    mps_tx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
				    mps_trc_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
				    mps_stat_sram_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
				    mps_stat_tx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
				    mps_stat_rx_intr_info) +
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
				    mps_cls_intr_info);

	t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
		     RXINT | TXINT | STATINT);
	t4_read_reg(adapter, MPS_INT_CAUSE);                    /* flush */
	if (fat)
		t4_fatal_err(adapter);
}

#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
	static const char name[3][5] = { "EDC0", "EDC1", "MC" };

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
		addr = EDC_REG(EDC_INT_CAUSE, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
	} else {
		addr = MC_INT_CAUSE;
		cnt_addr = MC_ECC_STATUS;
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
	if (v & PERR_INT_CAUSE)
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
	if (v & ECC_CE_INT_CAUSE) {
		u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));

		t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
	if (v & ECC_UE_INT_CAUSE)
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
	if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);

	if (status & MEM_PERR_INT_CAUSE)
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
	if (status & MEM_WRAP_INT_CAUSE) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
			  MEM_WRAP_CLIENT_NUM_GET(v),
			  MEM_WRAP_ADDRESS_GET(v) << 4);
	}
	t4_write_reg(adap, MA_INT_CAUSE, status);
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
	static const struct intr_info smb_intr_info[] = {
		{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
	static const struct intr_info ncsi_intr_info[] = {
		{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
	u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));

	v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
	if (!v)
		return;

	if (v & TXFIFO_PRTY_ERR)
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
	if (v & RXFIFO_PRTY_ERR)
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
	static const struct intr_info pl_intr_info[] = {
		{ FATALPERR, "T4 fatal parity error", -1, 1 },
		{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
		t4_fatal_err(adap);
}

#define PF_INTR_MASK (PFSW)
#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
		EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
		CPL_SWITCH | SGE | ULP_TX)

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);

	if (!(cause & GLBL_INTR_MASK))
		return 0;
	if (cause & CIM)
		cim_intr_handler(adapter);
	if (cause & MPS)
		mps_intr_handler(adapter);
	if (cause & NCSI)
		ncsi_intr_handler(adapter);
	if (cause & PL)
		pl_intr_handler(adapter);
	if (cause & SMB)
		smb_intr_handler(adapter);
	if (cause & XGMAC0)
		xgmac_intr_handler(adapter, 0);
	if (cause & XGMAC1)
		xgmac_intr_handler(adapter, 1);
	if (cause & XGMAC_KR0)
		xgmac_intr_handler(adapter, 2);
	if (cause & XGMAC_KR1)
		xgmac_intr_handler(adapter, 3);
	if (cause & PCIE)
		pcie_intr_handler(adapter);
	if (cause & MC)
		mem_intr_handler(adapter, MEM_MC);
	if (cause & EDC0)
		mem_intr_handler(adapter, MEM_EDC0);
	if (cause & EDC1)
		mem_intr_handler(adapter, MEM_EDC1);
	if (cause & LE)
		le_intr_handler(adapter);
	if (cause & TP)
		tp_intr_handler(adapter);
	if (cause & MA)
		ma_intr_handler(adapter);
	if (cause & PM_TX)
		pmtx_intr_handler(adapter);
	if (cause & PM_RX)
		pmrx_intr_handler(adapter);
	if (cause & ULP_RX)
		ulprx_intr_handler(adapter);
	if (cause & CPL_SWITCH)
		cplsw_intr_handler(adapter);
	if (cause & SGE)
		sge_intr_handler(adapter);
	if (cause & ULP_TX)
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
	t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
	(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
	u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));

	t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
		     ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
		     ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
		     ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
		     ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
		     ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
		     ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
		     DBFIFO_HP_INT | DBFIFO_LP_INT |
		     EGRESS_SIZE_ERR);
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
	u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));

	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by HW inexact
 *	(hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
			       FW_CMD_REQUEST | FW_CMD_WRITE |
			       FW_RSS_IND_TBL_CMD_VIID(viid));
	cmd.retval_len16 = htonl(FW_LEN16(cmd));

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

		cmd.niqid = htons(nq);
		cmd.startidx = htons(start);

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

			v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;
			v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;
			v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
			if (++rsp >= rsp_end)
				rsp = rspq;

			*qp++ = htonl(v);
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
			      FW_CMD_REQUEST | FW_CMD_WRITE);
	c.retval_len16 = htonl(FW_LEN16(c));
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
		c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
			htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];

#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
		t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
		v4->tcpOutRsts = STAT(OUT_RST);
		v4->tcpInSegs  = STAT64(IN_SEG);
		v4->tcpOutSegs = STAT64(OUT_SEG);
		v4->tcpRetransSegs = STAT64(RXT_SEG);
	}
	if (v6) {
		t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
		v6->tcpOutRsts = STAT(OUT_RST);
		v6->tcpInSegs  = STAT64(IN_SEG);
		v6->tcpOutSegs = STAT64(OUT_SEG);
		v6->tcpRetransSegs = STAT64(RXT_SEG);
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
		t4_write_reg(adap, TP_MTU_TABLE,
			     MTUINDEX(0xff) | MTUVALUE(i));
		v = t4_read_reg(adap, TP_MTU_TABLE);
		mtus[i] = MTUVALUE_GET(v);
		if (mtu_log)
			mtu_log[i] = MTUWIDTH_GET(v);
	}
}

/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
		t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
			     MTUWIDTH(log2) | MTUVALUE(mtu));

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

			t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

/**
 *	get_mps_bg_map - return the buffer groups associated with a port
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
	u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
	u32 bgmap = get_mps_bg_map(adap, idx);

#define GET_STAT(name) \
	t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
 *	t4_wol_magic_enable - enable/disable magic packet WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@addr: MAC address expected in magic packets, %NULL to disable
 *
 *	Enables/disables magic packet wake-on-LAN for the selected port.
 */
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
			 const u8 *addr)
{
	if (addr) {
		t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
			     (addr[2] << 24) | (addr[3] << 16) |
			     (addr[4] << 8) | addr[5]);
		t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
			     (addr[0] << 8) | addr[1]);
	}
	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
			 addr ? MAGICEN : 0);
}

/**
 *	t4_wol_pat_enable - enable/disable pattern-based WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@map: bitmap of which HW pattern filters to set
 *	@mask0: byte mask for bytes 0-63 of a packet
 *	@mask1: byte mask for bytes 64-127 of a packet
 *	@crc: Ethernet CRC for selected bytes
 *	@enable: enable/disable switch
 *
 *	Sets the pattern filters indicated in @map to mask out the bytes
 *	specified in @mask0/@mask1 in received packets and compare the CRC of
 *	the resulting packet against @crc.  If @enable is %true pattern-based
 *	WoL is enabled, otherwise disabled.
 */
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
	int i;

	if (!enable) {
		t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
				 PATEN, 0);
		return 0;
	}
	if (map > 0xff)
		return -EINVAL;

#define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)

	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);

	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
		if (!(map & 1))
			continue;

		/* write byte masks */
		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
		if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
			return -ETIMEDOUT;

		/* write CRC */
		t4_write_reg(adap, EPIO_REG(DATA0), crc);
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
		if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
			return -ETIMEDOUT;
	}
#undef EPIO_REG

	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
	return 0;
}

#define INIT_CMD(var, cmd, rd_wr) do { \
	(var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
				  FW_CMD_REQUEST | FW_CMD_##rd_wr); \
	(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)

int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
			    F_FW_CMD_WRITE |
			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.addrval.addr = htonl(addr);
	c.u.addrval.val = htonl(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *     t4_mem_win_read_len - read memory through PCIE memory window
 *     @adap: the adapter
 *     @addr: address of first byte requested aligned on 32b.
 *     @data: len bytes to hold the data read
 *     @len: amount of data to read from window.  Must be <=
 *            MEMWIN0_APERATURE after adjusting for 16B alignment
 *            requirements of the the memory window.
 *
 *     Read len bytes of data from MC starting at @addr.
 */
int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
{
	int i;
	int off;

	/*
	 * Align on a 16B boundary.
	 */
	off = addr & 15;
	if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
		return -EINVAL;

	t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15);
	t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);

	for (i = 0; i < len; i += 4)
		*data++ = t4_read_reg(adap, (MEMWIN0_BASE + off + i));

	return 0;
}

/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
		FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
				   FW_LDST_CMD_MMD(mmd));
	c.u.mdio.raddr = htons(reg);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		*valp = ntohs(c.u.mdio.rval);
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
		FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
				   FW_LDST_CMD_MMD(mmd));
	c.u.mdio.raddr = htons(reg);
	c.u.mdio.rval = htons(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_hello - establish communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@evt_mbox: mailbox to receive async FW events
 *	@master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state
 *
 *	Issues a command to establish communication with FW.
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;

	INIT_CMD(c, HELLO, WRITE);
	c.err_to_mbasyncnot = htonl(
		FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
		FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
		FW_HELLO_CMD_MBASYNCNOT(evt_mbox));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0 && state) {
		u32 v = ntohl(c.err_to_mbasyncnot);
		if (v & FW_HELLO_CMD_INIT)
			*state = DEV_STATE_INIT;
		else if (v & FW_HELLO_CMD_ERR)
			*state = DEV_STATE_ERR;
		else
			*state = DEV_STATE_UNINIT;
	}
	return ret;
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

	INIT_CMD(c, RESET, WRITE);
	c.val = htonl(reset);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_query_params - query FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
			    FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
			    FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	for (i = 0; i < nparams; i++, p += 2)
		*p = htonl(*params++);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
			*val++ = ntohl(*p);
	return ret;
}

/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
			    FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	while (nparams--) {
		*p++ = htonl(*params++);
		*p++ = htonl(*val++);
	}

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
			    FW_PFVF_CMD_VFN(vf));
	c.retval_len16 = htonl(FW_LEN16(c));
	c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
			       FW_PFVF_CMD_NIQ(rxq));
	c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
			       FW_PFVF_CMD_PMASK(pmask) |
			       FW_PFVF_CMD_NEQ(txq));
	c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
				FW_PFVF_CMD_NEXACTF(nexact));
	c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
				     FW_PFVF_CMD_WX_CAPS(wxcaps) |
				     FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
			    FW_CMD_WRITE | FW_CMD_EXEC |
			    FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
	c.portid_pkd = FW_VI_CMD_PORTID(port);
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
		*rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
	return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
	if (all_multi < 0)
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
	if (bcast < 0)
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
	if (vlanex < 0)
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
	c.retval_len16 = htonl(FW_LEN16(c));
	c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
				  FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
				  FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
				  FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
				  FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
	int i, ret;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p;

	if (naddr > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
			     FW_VI_MAC_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
				    FW_CMD_LEN16((naddr + 2) / 2));

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
		p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
				      FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
		memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
	}

	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
	if (ret)
		return ret;

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
		u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));

		if (idx)
			idx[i] = index >= NEXACT_MAC ? 0xffff : index;
		if (index < NEXACT_MAC)
			ret++;
		else if (hash)
			*hash |= (1ULL << hash_mac_addr(addr[i]));
	}
	return ret;
}

/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
	p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
				FW_VI_MAC_CMD_SMAC_RESULT(mode) |
				FW_VI_MAC_CMD_IDX(idx));
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
		ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
		if (ret >= NEXACT_MAC)
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
			     FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
				    FW_VI_MAC_CMD_HASHUNIEN(ucast) |
				    FW_CMD_LEN16(1));
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
			       FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

	c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
			     FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
	c.blinkdur = htons(nblinks);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
			    FW_IQ_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
	c.iqid = htons(iqid);
	c.fl0id = htons(fl0id);
	c.fl1id = htons(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
			    FW_EQ_ETH_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
			    FW_EQ_CTRL_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
			    FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
			    FW_EQ_OFLD_CMD_VFN(vf));
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
		int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
		int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);

		if (stat & FW_PORT_CMD_RXPAUSE)
			fc |= PAUSE_RX;
		if (stat & FW_PORT_CMD_TXPAUSE)
			fc |= PAUSE_TX;
		if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
			speed = SPEED_100;
		else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
			speed = SPEED_1000;
		else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
			speed = SPEED_10000;

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

static void __devinit get_pci_mode(struct adapter *adapter,
				   struct pci_params *p)
{
	u16 val;
	u32 pcie_cap = pci_pcie_cap(adapter->pdev);

	if (pcie_cap) {
		pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
				     &val);
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
static void __devinit init_link_config(struct link_config *lc,
				       unsigned int caps)
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

int t4_wait_dev_ready(struct adapter *adap)
{
	if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
		return 0;
	msleep(500);
	return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
}

static int __devinit get_flash_params(struct adapter *adap)
{
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
	t4_write_reg(adap, SF_OP, 0);                    /* unlock SF */
	if (ret)
		return ret;

	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
		t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
	return 0;
}

/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
int __devinit t4_prep_adapter(struct adapter *adapter)
{
	int ret;

	ret = t4_wait_dev_ready(adapter);
	if (ret < 0)
		return ret;

	get_pci_mode(adapter, &adapter->params.pci);
	adapter->params.rev = t4_read_reg(adapter, PL_REV);

	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

	ret = get_vpd_params(adapter, &adapter->params.vpd);
	if (ret < 0)
		return ret;

	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
	return 0;
}

int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
	struct fw_rss_vi_config_cmd rvc;

	memset(&c, 0, sizeof(c));
	memset(&rvc, 0, sizeof(rvc));

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

		c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
				       FW_CMD_REQUEST | FW_CMD_READ |
				       FW_PORT_CMD_PORTID(j));
		c.action_to_len16 = htonl(
			FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
		memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
		adap->port[i]->dev_id = j;

		ret = ntohl(c.u.info.lstatus_to_modtype);
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
			FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
		p->mod_type = FW_PORT_MOD_TYPE_NA;

		rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
				       FW_CMD_REQUEST | FW_CMD_READ |
				       FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = htonl(FW_LEN16(rvc));
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);

		init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
		j++;
	}
	return 0;
}

[Index of Archives]     [Kernel Development]     [Kernel Announce]     [Kernel Newbies]     [Linux Networking Development]     [Share Photos]     [IDE]     [Security]     [Git]     [Netfilter]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Device Mapper]

  Powered by Linux