Hi Christoph, FYI, there are new sparse warnings show up in tree: git://git.kernel.org/pub/scm/linux/kernel/git/glommer/memcg.git slab-common/kmalloc head: f957c1ead131972db578b945e25982f4607da6ba commit: f957c1ead131972db578b945e25982f4607da6ba [29/30] CK1 [13/13] Common function to create the kmalloc array + mm/slab_common.c:274:68: sparse: incorrect type in argument 3 (different base types) mm/slab_common.c:274:68: expected unsigned long [unsigned] flags mm/slab_common.c:274:68: got restricted gfp_t [usertype] flags mm/slab_common.c:277:69: sparse: incorrect type in argument 3 (different base types) mm/slab_common.c:277:69: expected unsigned long [unsigned] flags mm/slab_common.c:277:69: got restricted gfp_t [usertype] flags mm/slab_common.c:282:65: sparse: incorrect type in argument 3 (different base types) mm/slab_common.c:282:65: expected unsigned long [unsigned] flags mm/slab_common.c:282:65: got restricted gfp_t [usertype] flags + mm/slab_common.c:310:56: sparse: restricted gfp_t degrades to integer mm/slab_common.c: In function 'create_boot_cache': mm/slab_common.c:236:6: warning: format '%ld' expects argument of type 'long int', but argument 3 has type 'size_t' [-Wformat] vim +274 mm/slab_common.c 55a6b9f9 (Christoph Lameter 2012-09-26 258) #ifdef CONFIG_ZONE_DMA 55a6b9f9 (Christoph Lameter 2012-09-26 259) struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 55a6b9f9 (Christoph Lameter 2012-09-26 260) EXPORT_SYMBOL(kmalloc_dma_caches); 55a6b9f9 (Christoph Lameter 2012-09-26 261) #endif 55a6b9f9 (Christoph Lameter 2012-09-26 262) f957c1ea (Christoph Lameter 2012-09-26 263) /* f957c1ea (Christoph Lameter 2012-09-26 264) * Create the kmalloc array. Some of the regular kmalloc arrays f957c1ea (Christoph Lameter 2012-09-26 265) * may already have been created because they were needed to f957c1ea (Christoph Lameter 2012-09-26 266) * enable allocations for slab creation. f957c1ea (Christoph Lameter 2012-09-26 267) */ f957c1ea (Christoph Lameter 2012-09-26 268) void __init create_kmalloc_caches(gfp_t flags) f957c1ea (Christoph Lameter 2012-09-26 269) { f957c1ea (Christoph Lameter 2012-09-26 270) int i; f957c1ea (Christoph Lameter 2012-09-26 271) f957c1ea (Christoph Lameter 2012-09-26 272) /* Caches that are not of the two-to-the-power-of size */ f957c1ea (Christoph Lameter 2012-09-26 273) if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1]) f957c1ea (Christoph Lameter 2012-09-26 @274) kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); f957c1ea (Christoph Lameter 2012-09-26 275) f957c1ea (Christoph Lameter 2012-09-26 276) if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2]) f957c1ea (Christoph Lameter 2012-09-26 277) kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); f957c1ea (Christoph Lameter 2012-09-26 278) f957c1ea (Christoph Lameter 2012-09-26 279) for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) f957c1ea (Christoph Lameter 2012-09-26 280) if (!kmalloc_caches[i]) f957c1ea (Christoph Lameter 2012-09-26 281) kmalloc_caches[i] = create_kmalloc_cache(NULL, f957c1ea (Christoph Lameter 2012-09-26 282) 1 << i, flags); --- 0-DAY kernel build testing backend Open Source Technology Centre Fengguang Wu, Yuanhan Liu Intel Corporation
/* * Slab allocator functions that are independent of the allocator strategy * * (C) 2012 Christoph Lameter <cl@xxxxxxxxx> */ #include <linux/slab.h> #include <linux/mm.h> #include <linux/poison.h> #include <linux/interrupt.h> #include <linux/memory.h> #include <linux/compiler.h> #include <linux/module.h> #include <linux/cpu.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> #include "slab.h" enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; #ifdef CONFIG_DEBUG_VM static int kmem_cache_sanity_check(const char *name, size_t size) { struct kmem_cache *s = NULL; if (!name || in_interrupt() || size < sizeof(void *) || size > KMALLOC_MAX_SIZE) { pr_err("kmem_cache_create(%s) integrity check failed\n", name); return -EINVAL; } list_for_each_entry(s, &slab_caches, list) { char tmp; int res; /* * This happens when the module gets unloaded and doesn't * destroy its slab cache and no-one else reuses the vmalloc * area of the module. Print a warning. */ res = probe_kernel_address(s->name, tmp); if (res) { pr_err("Slab cache with size %d has lost its name\n", s->object_size); continue; } if (!strcmp(s->name, name)) { pr_err("%s (%s): Cache name already exists.\n", __func__, name); dump_stack(); s = NULL; return -EINVAL; } } WARN_ON(strchr(name, ' ')); /* It confuses parsers */ return 0; } #else static inline int kmem_cache_sanity_check(const char *name, size_t size) { return 0; } #endif /* * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. */ unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size) { /* * If the user wants hardware cache aligned objects then follow that * suggestion if the object is sufficiently large. * * The hardware cache alignment cannot override the specified * alignment though. If that is greater then use it. */ if (flags & SLAB_HWCACHE_ALIGN) { unsigned long ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; align = max(align, ralign); } if (align < ARCH_SLAB_MINALIGN) align = ARCH_SLAB_MINALIGN; return ALIGN(align, sizeof(void *)); } /* * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Returns a ptr to the cache on success, NULL on failure. * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. */ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { struct kmem_cache *s = NULL; int err = 0; get_online_cpus(); mutex_lock(&slab_mutex); if (!kmem_cache_sanity_check(name, size) == 0) goto out_locked; s = __kmem_cache_alias(name, size, align, flags, ctor); if (s) goto out_locked; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); if (s) { s->object_size = s->size = size; s->align = calculate_alignment(flags, align, size); s->ctor = ctor; s->name = kstrdup(name, GFP_KERNEL); if (!s->name) { kmem_cache_free(kmem_cache, s); err = -ENOMEM; goto out_locked; } err = __kmem_cache_create(s, flags); if (!err) { s->refcount = 1; list_add(&s->list, &slab_caches); } else { kfree(s->name); kmem_cache_free(kmem_cache, s); } } else err = -ENOMEM; out_locked: mutex_unlock(&slab_mutex); put_online_cpus(); if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); else { printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", name, err); dump_stack(); } return NULL; } return s; } EXPORT_SYMBOL(kmem_cache_create); void kmem_cache_destroy(struct kmem_cache *s) { get_online_cpus(); mutex_lock(&slab_mutex); s->refcount--; if (!s->refcount) { list_del(&s->list); if (!__kmem_cache_shutdown(s)) { if (s->flags & SLAB_DESTROY_BY_RCU) rcu_barrier(); kfree(s->name); kmem_cache_free(kmem_cache, s); } else { list_add(&s->list, &slab_caches); printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n", s->name); dump_stack(); } } mutex_unlock(&slab_mutex); put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); int slab_is_available(void) { return slab_state >= UP; } #ifndef CONFIG_SLOB /* Create a cache during boot when no slab services are available yet */ void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, unsigned long flags) { int err; s->name = name; s->size = s->object_size = size; s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); err = __kmem_cache_create(s, flags); if (err) panic("Creation of kmalloc slab %s size=%ld failed. Reason %d\n", name, size, err); list_add(&s->list, &slab_caches); s->refcount = -1; /* Exempt from merging for now */ } struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, unsigned long flags) { struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); if (!s) panic("Out of memory when creating slab %s\n", name); create_boot_cache(s, name, size, flags); s->refcount = 1; return s; } struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; EXPORT_SYMBOL(kmalloc_caches); #ifdef CONFIG_ZONE_DMA struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; EXPORT_SYMBOL(kmalloc_dma_caches); #endif /* * Create the kmalloc array. Some of the regular kmalloc arrays * may already have been created because they were needed to * enable allocations for slab creation. */ void __init create_kmalloc_caches(gfp_t flags) { int i; /* Caches that are not of the two-to-the-power-of size */ if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1]) kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2]) kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) if (!kmalloc_caches[i]) kmalloc_caches[i] = create_kmalloc_cache(NULL, 1 << i, flags); /* Kmalloc array is now usable */ slab_state = UP; for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache *s = kmalloc_caches[i]; char *n; if (s) { n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); BUG_ON(!n); s->name = n; } } #ifdef CONFIG_ZONE_DMA for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache *s = kmalloc_caches[i]; if (s) { int size = kmalloc_size(i); char *n = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", size); BUG_ON(!n); kmalloc_dma_caches[i] = create_kmalloc_cache(n, size, SLAB_CACHE_DMA | flags); } } #endif } #endif /* !CONFIG_SLOB */