On Fri, Sep 06, 2024 at 10:45:03AM -0400, Kris Van Hees wrote: > Create file module.builtin.ranges that can be used to find where > built-in modules are located by their addresses. This will be useful for > tracing tools to find what functions are for various built-in modules. > > The offset range data for builtin modules is generated using: > - modules.builtin: associates object files with module names > - vmlinux.map: provides load order of sections and offset of first member > per section > - vmlinux.o.map: provides offset of object file content per section > - .*.cmd: build cmd file with KBUILD_MODFILE > > The generated data will look like: > > .text 00000000-00000000 = _text > .text 0000baf0-0000cb10 amd_uncore > .text 0009bd10-0009c8e0 iosf_mbi > ... > .text 00b9f080-00ba011a intel_skl_int3472_discrete > .text 00ba0120-00ba03c0 intel_skl_int3472_discrete intel_skl_int3472_tps68470 > .text 00ba03c0-00ba08d6 intel_skl_int3472_tps68470 > ... > .data 00000000-00000000 = _sdata > .data 0000f020-0000f680 amd_uncore > > For each ELF section, it lists the offset of the first symbol. This can > be used to determine the base address of the section at runtime. > > Next, it lists (in strict ascending order) offset ranges in that section > that cover the symbols of one or more builtin modules. Multiple ranges > can apply to a single module, and ranges can be shared between modules. > > The CONFIG_BUILTIN_MODULE_RANGES option controls whether offset range data > is generated for kernel modules that are built into the kernel image. > > How it works: > > 1. The modules.builtin file is parsed to obtain a list of built-in > module names and their associated object names (the .ko file that > the module would be in if it were a loadable module, hereafter > referred to as <kmodfile>). This object name can be used to > identify objects in the kernel compile because any C or assembler > code that ends up into a built-in module will have the option > -DKBUILD_MODFILE=<kmodfile> present in its build command, and those > can be found in the .<obj>.cmd file in the kernel build tree. > > If an object is part of multiple modules, they will all be listed > in the KBUILD_MODFILE option argument. > > This allows us to conclusively determine whether an object in the > kernel build belong to any modules, and which. > > 2. The vmlinux.map is parsed next to determine the base address of each > top level section so that all addresses into the section can be > turned into offsets. This makes it possible to handle sections > getting loaded at different addresses at system boot. > > We also determine an 'anchor' symbol at the beginning of each > section to make it possible to calculate the true base address of > a section at runtime (i.e. symbol address - symbol offset). > > We collect start addresses of sections that are included in the top > level section. This is used when vmlinux is linked using vmlinux.o, > because in that case, we need to look at the vmlinux.o linker map to > know what object a symbol is found in. > > And finally, we process each symbol that is listed in vmlinux.map > (or vmlinux.o.map) based on the following structure: > > vmlinux linked from vmlinux.a: > > vmlinux.map: > <top level section> > <included section> -- might be same as top level section) > <object> -- built-in association known > <symbol> -- belongs to module(s) object belongs to > ... > > vmlinux linked from vmlinux.o: > > vmlinux.map: > <top level section> > <included section> -- might be same as top level section) > vmlinux.o -- need to use vmlinux.o.map > <symbol> -- ignored > ... > > vmlinux.o.map: > <section> > <object> -- built-in association known > <symbol> -- belongs to module(s) object belongs to > ... > > 3. As sections, objects, and symbols are processed, offset ranges are > constructed in a straight-forward way: > > - If the symbol belongs to one or more built-in modules: > - If we were working on the same module(s), extend the range > to include this object > - If we were working on another module(s), close that range, > and start the new one > - If the symbol does not belong to any built-in modules: > - If we were working on a module(s) range, close that range > > Signed-off-by: Kris Van Hees <kris.van.hees@xxxxxxxxxx> > Reviewed-by: Nick Alcock <nick.alcock@xxxxxxxxxx> > Reviewed-by: Alan Maguire <alan.maguire@xxxxxxxxxx> > Reviewed-by: Steven Rostedt (Google) <rostedt@xxxxxxxxxxx> > Tested-by: Sam James <sam@xxxxxxxxxx> > --- > > Notes: > Changes since v9: > - Reverted support for build directory as optional 4th argument. > - Added modules.builtin.ranges and vmlinux.o.map to CLEAN_FILES. > - Fixed support for sparc64. > > Changes since v8: > - Added support for built-in Rust modules. > - Added optional 4th argument to specify kernel build directory. > > Changes since v7: > - Removed extra close(fn). > - Make CONFIG_BUILTIN_MODULE_RANGES depend on !lTO. > > Changes since v6: > - Applied Masahiro Yamada's suggestions (Kconfig, makefile, script). > > Changes since v5: > - Removed unnecessary compatibility info from option description. > > Changes since v4: > - Improved commit description to explain the why and how. > - Documented dependency on GNU AWK for CONFIG_BUILTIN_MODULE_RANGES. > - Improved comments in generate_builtin_ranges.awk > - Improved logic in generate_builtin_ranges.awk to handle incorrect > object size information in linker maps > > Changes since v3: > - Consolidated patches 2 through 5 into a single patch > - Move CONFIG_BUILTIN_MODULE_RANGES to Kconfig.debug > - Make CONFIG_BUILTIN_MODULE_RANGES select CONFIG_VMLINUX_MAP > - Disable CONFIG_BUILTIN_MODULE_RANGES if CONFIG_LTO_CLANG_(FULL|THIN)=y > - Support LLVM (lld) compiles in generate_builtin_ranges.awk > - Support CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y > > Changes since v2: > - Add explicit dependency on FTRACE for CONFIG_BUILTIN_MODULE_RANGES > - 1st arg to generate_builtin_ranges.awk is now modules.builtin.modinfo > - Switched from using modules.builtin.objs to parsing .*.cmd files > - Parse data from .*.cmd in generate_builtin_ranges.awk > - Use $(real-prereqs) rather than $(filter-out ...) > --- > > Documentation/process/changes.rst | 7 + > Makefile | 1 + > lib/Kconfig.debug | 15 + > scripts/Makefile.vmlinux | 18 + > scripts/Makefile.vmlinux_o | 3 + > scripts/generate_builtin_ranges.awk | 508 ++++++++++++++++++++++++++++ > 6 files changed, 552 insertions(+) > create mode 100755 scripts/generate_builtin_ranges.awk > > diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst > index 3fc63f27c226..00f1ed7c59c3 100644 > --- a/Documentation/process/changes.rst > +++ b/Documentation/process/changes.rst > @@ -64,6 +64,7 @@ GNU tar 1.28 tar --version > gtags (optional) 6.6.5 gtags --version > mkimage (optional) 2017.01 mkimage --version > Python (optional) 3.5.x python3 --version > +GNU AWK (optional) 5.1.0 gawk --version > ====================== =============== ======================================== > > .. [#f1] Sphinx is needed only to build the Kernel documentation > @@ -192,6 +193,12 @@ platforms. The tool is available via the ``u-boot-tools`` package or can be > built from the U-Boot source code. See the instructions at > https://docs.u-boot.org/en/latest/build/tools.html#building-tools-for-linux > > +GNU AWK > +------- > + > +GNU AWK is needed if you want kernel builds to generate address range data for > +builtin modules (CONFIG_BUILTIN_MODULE_RANGES). > + > System utilities > **************** > > diff --git a/Makefile b/Makefile > index d57cfc6896b8..ec98a1e5b257 100644 > --- a/Makefile > +++ b/Makefile > @@ -1482,6 +1482,7 @@ endif # CONFIG_MODULES > # Directories & files removed with 'make clean' > CLEAN_FILES += vmlinux.symvers modules-only.symvers \ > modules.builtin modules.builtin.modinfo modules.nsdeps \ > + modules.builtin.ranges vmlinux.o.map \ > compile_commands.json rust/test \ > rust-project.json .vmlinux.objs .vmlinux.export.c > > diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug > index a30c03a66172..5e2f30921cb2 100644 > --- a/lib/Kconfig.debug > +++ b/lib/Kconfig.debug > @@ -571,6 +571,21 @@ config VMLINUX_MAP > pieces of code get eliminated with > CONFIG_LD_DEAD_CODE_DATA_ELIMINATION. > > +config BUILTIN_MODULE_RANGES > + bool "Generate address range information for builtin modules" > + depends on !LTO > + depends on VMLINUX_MAP > + help > + When modules are built into the kernel, there will be no module name > + associated with its symbols in /proc/kallsyms. Tracers may want to > + identify symbols by module name and symbol name regardless of whether > + the module is configured as loadable or not. > + > + This option generates modules.builtin.ranges in the build tree with > + offset ranges (per ELF section) for the module(s) they belong to. > + It also records an anchor symbol to determine the load address of the > + section. > + > config DEBUG_FORCE_WEAK_PER_CPU > bool "Force weak per-cpu definitions" > depends on DEBUG_KERNEL > diff --git a/scripts/Makefile.vmlinux b/scripts/Makefile.vmlinux > index 5ceecbed31eb..dfb408aa19c6 100644 > --- a/scripts/Makefile.vmlinux > +++ b/scripts/Makefile.vmlinux > @@ -33,6 +33,24 @@ targets += vmlinux > vmlinux: scripts/link-vmlinux.sh vmlinux.o $(KBUILD_LDS) FORCE > +$(call if_changed_dep,link_vmlinux) > > +# module.builtin.ranges > +# --------------------------------------------------------------------------- > +ifdef CONFIG_BUILTIN_MODULE_RANGES > +__default: modules.builtin.ranges > + > +quiet_cmd_modules_builtin_ranges = GEN $@ > + cmd_modules_builtin_ranges = $(real-prereqs) > $@ > + > +targets += modules.builtin.ranges > +modules.builtin.ranges: $(srctree)/scripts/generate_builtin_ranges.awk \ > + modules.builtin vmlinux.map vmlinux.o.map FORCE > + $(call if_changed,modules_builtin_ranges) > + > +vmlinux.map: vmlinux > + @: > + > +endif > + > # Add FORCE to the prerequisites of a target to force it to be always rebuilt. > # --------------------------------------------------------------------------- > > diff --git a/scripts/Makefile.vmlinux_o b/scripts/Makefile.vmlinux_o > index d64070b6b4bc..0b6e2ebf60dc 100644 > --- a/scripts/Makefile.vmlinux_o > +++ b/scripts/Makefile.vmlinux_o > @@ -45,9 +45,12 @@ objtool-args = $(vmlinux-objtool-args-y) --link > # Link of vmlinux.o used for section mismatch analysis > # --------------------------------------------------------------------------- > > +vmlinux-o-ld-args-$(CONFIG_BUILTIN_MODULE_RANGES) += -Map=$@.map > + > quiet_cmd_ld_vmlinux.o = LD $@ > cmd_ld_vmlinux.o = \ > $(LD) ${KBUILD_LDFLAGS} -r -o $@ \ > + $(vmlinux-o-ld-args-y) \ > $(addprefix -T , $(initcalls-lds)) \ > --whole-archive vmlinux.a --no-whole-archive \ > --start-group $(KBUILD_VMLINUX_LIBS) --end-group \ > diff --git a/scripts/generate_builtin_ranges.awk b/scripts/generate_builtin_ranges.awk > new file mode 100755 > index 000000000000..b9ec761b3bef > --- /dev/null > +++ b/scripts/generate_builtin_ranges.awk > @@ -0,0 +1,508 @@ > +#!/usr/bin/gawk -f This forces the gawk to be found always in /usr/bin. For systems where gawk can be located in other places, can we change the Shebang to: diff --git a/scripts/generate_builtin_ranges.awk b/scripts/generate_builtin_ranges.awk index b9ec761b3bef..886251c8d3f7 100755 --- a/scripts/generate_builtin_ranges.awk +++ b/scripts/generate_builtin_ranges.awk @@ -1,4 +1,4 @@ -#!/usr/bin/gawk -f +#!/usr/bin/env gawk -f # SPDX-License-Identifier: GPL-2.0 # generate_builtin_ranges.awk: Generate address range data for builtin modules # Written by Kris Van Hees <kris.van.hees@xxxxxxxxxx> Not sure if it's too late? in that case I can send a patch to change this. Daniel > +# SPDX-License-Identifier: GPL-2.0 > +# generate_builtin_ranges.awk: Generate address range data for builtin modules > +# Written by Kris Van Hees <kris.van.hees@xxxxxxxxxx> > +# > +# Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \ > +# vmlinux.o.map > modules.builtin.ranges > +# > + > +# Return the module name(s) (if any) associated with the given object. > +# > +# If we have seen this object before, return information from the cache. > +# Otherwise, retrieve it from the corresponding .cmd file. > +# > +function get_module_info(fn, mod, obj, s) { > + if (fn in omod) > + return omod[fn]; > + > + if (match(fn, /\/[^/]+$/) == 0) > + return ""; > + > + obj = fn; > + mod = ""; > + fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd"; > + if (getline s <fn == 1) { > + if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) { > + mod = substr(s, RSTART + 16, RLENGTH - 16); > + gsub(/['"]/, "", mod); > + } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0) > + mod = substr(s, RSTART + 13, RLENGTH - 13); > + } > + close(fn); > + > + # A single module (common case) also reflects objects that are not part > + # of a module. Some of those objects have names that are also a module > + # name (e.g. core). We check the associated module file name, and if > + # they do not match, the object is not part of a module. > + if (mod !~ / /) { > + if (!(mod in mods)) > + mod = ""; > + } > + > + gsub(/([^/ ]*\/)+/, "", mod); > + gsub(/-/, "_", mod); > + > + # At this point, mod is a single (valid) module name, or a list of > + # module names (that do not need validation). > + omod[obj] = mod; > + > + return mod; > +} > + > +# Update the ranges entry for the given module 'mod' in section 'osect'. > +# > +# We use a modified absolute start address (soff + base) as index because we > +# may need to insert an anchor record later that must be at the start of the > +# section data, and the first module may very well start at the same address. > +# So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at > +# (addr << 1). This is safe because the index is only used to sort the entries > +# before writing them out. > +# > +function update_entry(osect, mod, soff, eoff, sect, idx) { > + sect = sect_in[osect]; > + idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1); > + entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod); > + count[sect]++; > +} > + > +# (1) Build a lookup map of built-in module names. > +# > +# The first file argument is used as input (modules.builtin). > +# > +# Lines will be like: > +# kernel/crypto/lzo-rle.ko > +# and we record the object name "crypto/lzo-rle". > +# > +ARGIND == 1 { > + sub(/kernel\//, ""); # strip off "kernel/" prefix > + sub(/\.ko$/, ""); # strip off .ko suffix > + > + mods[$1] = 1; > + next; > +} > + > +# (2) Collect address information for each section. > +# > +# The second file argument is used as input (vmlinux.map). > +# > +# We collect the base address of the section in order to convert all addresses > +# in the section into offset values. > +# > +# We collect the address of the anchor (or first symbol in the section if there > +# is no explicit anchor) to allow users of the range data to calculate address > +# ranges based on the actual load address of the section in the running kernel. > +# > +# We collect the start address of any sub-section (section included in the top > +# level section being processed). This is needed when the final linking was > +# done using vmlinux.a because then the list of objects contained in each > +# section is to be obtained from vmlinux.o.map. The offset of the sub-section > +# is recorded here, to be used as an addend when processing vmlinux.o.map > +# later. > +# > + > +# Both GNU ld and LLVM lld linker map format are supported by converting LLVM > +# lld linker map records into equivalent GNU ld linker map records. > +# > +# The first record of the vmlinux.map file provides enough information to know > +# which format we are dealing with. > +# > +ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" { > + map_is_lld = 1; > + if (dbg) > + printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr"; > + next; > +} > + > +# (LLD) Convert a section record fronm lld format to ld format. > +# > +# lld: ffffffff82c00000 2c00000 2493c0 8192 .data > +# -> > +# ld: .data 0xffffffff82c00000 0x2493c0 load address 0x0000000002c00000 > +# > +ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ { > + $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2; > +} > + > +# (LLD) Convert an anchor record from lld format to ld format. > +# > +# lld: ffffffff81000000 1000000 0 1 _text = . > +# -> > +# ld: 0xffffffff81000000 _text = . > +# > +ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." { > + $0 = " 0x"$1 " " $5 " = ."; > +} > + > +# (LLD) Convert an object record from lld format to ld format. > +# > +# lld: 11480 11480 1f07 16 vmlinux.a(arch/x86/events/amd/uncore.o):(.text) > +# -> > +# ld: .text 0x0000000000011480 0x1f07 arch/x86/events/amd/uncore.o > +# > +ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ { > + gsub(/\)/, ""); > + sub(/ vmlinux\.a\(/, " "); > + sub(/:\(/, " "); > + $0 = " "$6 " 0x"$1 " 0x"$3 " " $5; > +} > + > +# (LLD) Convert a symbol record from lld format to ld format. > +# > +# We only care about these while processing a section for which no anchor has > +# been determined yet. > +# > +# lld: ffffffff82a859a4 2a859a4 0 1 btf_ksym_iter_id > +# -> > +# ld: 0xffffffff82a859a4 btf_ksym_iter_id > +# > +ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ { > + $0 = " 0x"$1 " " $5; > +} > + > +# (LLD) We do not need any other ldd linker map records. > +# > +ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / { > + next; > +} > + > +# (LD) Section records with just the section name at the start of the line > +# need to have the next line pulled in to determine whether it is a > +# loadable section. If it is, the next line will contains a hex value > +# as first and second items. > +# > +ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ { > + s = $0; > + getline; > + if ($1 !~ /^0x/ || $2 !~ /^0x/) > + next; > + > + $0 = s " " $0; > +} > + > +# (LD) Object records with just the section name denote records with a long > +# section name for which the remainder of the record can be found on the > +# next line. > +# > +# (This is also needed for vmlinux.o.map, when used.) > +# > +ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ { > + s = $0; > + getline; > + $0 = s " " $0; > +} > + > +# Beginning a new section - done with the previous one (if any). > +# > +ARGIND == 2 && /^[^ ]/ { > + sect = 0; > +} > + > +# Process a loadable section (we only care about .-sections). > +# > +# Record the section name and its base address. > +# We also record the raw (non-stripped) address of the section because it can > +# be used to identify an anchor record. > +# > +# Note: > +# Since some AWK implementations cannot handle large integers, we strip off the > +# first 4 hex digits from the address. This is safe because the kernel space > +# is not large enough for addresses to extend into those digits. The portion > +# to strip off is stored in addr_prefix as a regexp, so further clauses can > +# perform a simple substitution to do the address stripping. > +# > +ARGIND == 2 && /^\./ { > + # Explicitly ignore a few sections that are not relevant here. > + if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/) > + next; > + > + # Sections with a 0-address can be ignored as well. > + if ($2 ~ /^0x0+$/) > + next; > + > + raw_addr = $2; > + addr_prefix = "^" substr($2, 1, 6); > + base = $2; > + sub(addr_prefix, "0x", base); > + base = strtonum(base); > + sect = $1; > + anchor = 0; > + sect_base[sect] = base; > + sect_size[sect] = strtonum($3); > + > + if (dbg) > + printf "[%s] BASE %016x\n", sect, base >"/dev/stderr"; > + > + next; > +} > + > +# If we are not in a section we care about, we ignore the record. > +# > +ARGIND == 2 && !sect { > + next; > +} > + > +# Record the first anchor symbol for the current section. > +# > +# An anchor record for the section bears the same raw address as the section > +# record. > +# > +ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." { > + anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2); > + sect_anchor[sect] = anchor; > + > + if (dbg) > + printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr"; > + > + next; > +} > + > +# If no anchor record was found for the current section, use the first symbol > +# in the section as anchor. > +# > +ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ { > + addr = $1; > + sub(addr_prefix, "0x", addr); > + addr = strtonum(addr) - base; > + anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2); > + sect_anchor[sect] = anchor; > + > + if (dbg) > + printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr"; > + > + next; > +} > + > +# The first occurrence of a section name in an object record establishes the > +# addend (often 0) for that section. This information is needed to handle > +# sections that get combined in the final linking of vmlinux (e.g. .head.text > +# getting included at the start of .text). > +# > +# If the section does not have a base yet, use the base of the encapsulating > +# section. > +# > +ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) { > + if (!($1 in sect_base)) { > + sect_base[$1] = base; > + > + if (dbg) > + printf "[%s] BASE %016x\n", $1, base >"/dev/stderr"; > + } > + > + addr = $2; > + sub(addr_prefix, "0x", addr); > + addr = strtonum(addr); > + sect_addend[$1] = addr - sect_base[$1]; > + sect_in[$1] = sect; > + > + if (dbg) > + printf "[%s] ADDEND %016x - %016x = %016x\n", $1, addr, base, sect_addend[$1] >"/dev/stderr"; > + > + # If the object is vmlinux.o then we will need vmlinux.o.map to get the > + # actual offsets of objects. > + if ($4 == "vmlinux.o") > + need_o_map = 1; > +} > + > +# (3) Collect offset ranges (relative to the section base address) for built-in > +# modules. > +# > +# If the final link was done using the actual objects, vmlinux.map contains all > +# the information we need (see section (3a)). > +# If linking was done using vmlinux.a as intermediary, we will need to process > +# vmlinux.o.map (see section (3b)). > + > +# (3a) Determine offset range info using vmlinux.map. > +# > +# Since we are already processing vmlinux.map, the top level section that is > +# being processed is already known. If we do not have a base address for it, > +# we do not need to process records for it. > +# > +# Given the object name, we determine the module(s) (if any) that the current > +# object is associated with. > +# > +# If we were already processing objects for a (list of) module(s): > +# - If the current object belongs to the same module(s), update the range data > +# to include the current object. > +# - Otherwise, ensure that the end offset of the range is valid. > +# > +# If the current object does not belong to a built-in module, ignore it. > +# > +# If it does, we add a new built-in module offset range record. > +# > +ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" { > + if (!(sect in sect_base)) > + next; > + > + # Turn the address into an offset from the section base. > + soff = $2; > + sub(addr_prefix, "0x", soff); > + soff = strtonum(soff) - sect_base[sect]; > + eoff = soff + strtonum($3); > + > + # Determine which (if any) built-in modules the object belongs to. > + mod = get_module_info($4); > + > + # If we are processing a built-in module: > + # - If the current object is within the same module, we update its > + # entry by extending the range and move on > + # - Otherwise: > + # + If we are still processing within the same main section, we > + # validate the end offset against the start offset of the > + # current object (e.g. .rodata.str1.[18] objects are often > + # listed with an incorrect size in the linker map) > + # + Otherwise, we validate the end offset against the section > + # size > + if (mod_name) { > + if (mod == mod_name) { > + mod_eoff = eoff; > + update_entry(mod_sect, mod_name, mod_soff, eoff); > + > + next; > + } else if (sect == sect_in[mod_sect]) { > + if (mod_eoff > soff) > + update_entry(mod_sect, mod_name, mod_soff, soff); > + } else { > + v = sect_size[sect_in[mod_sect]]; > + if (mod_eoff > v) > + update_entry(mod_sect, mod_name, mod_soff, v); > + } > + } > + > + mod_name = mod; > + > + # If we encountered an object that is not part of a built-in module, we > + # do not need to record any data. > + if (!mod) > + next; > + > + # At this point, we encountered the start of a new built-in module. > + mod_name = mod; > + mod_soff = soff; > + mod_eoff = eoff; > + mod_sect = $1; > + update_entry($1, mod, soff, mod_eoff); > + > + next; > +} > + > +# If we do not need to parse the vmlinux.o.map file, we are done. > +# > +ARGIND == 3 && !need_o_map { > + if (dbg) > + printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr"; > + exit; > +} > + > +# (3) Collect offset ranges (relative to the section base address) for built-in > +# modules. > +# > + > +# (LLD) Convert an object record from lld format to ld format. > +# > +ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ { > + gsub(/\)/, ""); > + sub(/:\(/, " "); > + > + sect = $6; > + if (!(sect in sect_addend)) > + next; > + > + sub(/ vmlinux\.a\(/, " "); > + $0 = " "sect " 0x"$1 " 0x"$3 " " $5; > +} > + > +# (3b) Determine offset range info using vmlinux.o.map. > +# > +# If we do not know an addend for the object's section, we are interested in > +# anything within that section. > +# > +# Determine the top-level section that the object's section was included in > +# during the final link. This is the section name offset range data will be > +# associated with for this object. > +# > +# The remainder of the processing of the current object record follows the > +# procedure outlined in (3a). > +# > +ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" { > + osect = $1; > + if (!(osect in sect_addend)) > + next; > + > + # We need to work with the main section. > + sect = sect_in[osect]; > + > + # Turn the address into an offset from the section base. > + soff = $2; > + sub(addr_prefix, "0x", soff); > + soff = strtonum(soff) + sect_addend[osect]; > + eoff = soff + strtonum($3); > + > + # Determine which (if any) built-in modules the object belongs to. > + mod = get_module_info($4); > + > + # If we are processing a built-in module: > + # - If the current object is within the same module, we update its > + # entry by extending the range and move on > + # - Otherwise: > + # + If we are still processing within the same main section, we > + # validate the end offset against the start offset of the > + # current object (e.g. .rodata.str1.[18] objects are often > + # listed with an incorrect size in the linker map) > + # + Otherwise, we validate the end offset against the section > + # size > + if (mod_name) { > + if (mod == mod_name) { > + mod_eoff = eoff; > + update_entry(mod_sect, mod_name, mod_soff, eoff); > + > + next; > + } else if (sect == sect_in[mod_sect]) { > + if (mod_eoff > soff) > + update_entry(mod_sect, mod_name, mod_soff, soff); > + } else { > + v = sect_size[sect_in[mod_sect]]; > + if (mod_eoff > v) > + update_entry(mod_sect, mod_name, mod_soff, v); > + } > + } > + > + mod_name = mod; > + > + # If we encountered an object that is not part of a built-in module, we > + # do not need to record any data. > + if (!mod) > + next; > + > + # At this point, we encountered the start of a new built-in module. > + mod_name = mod; > + mod_soff = soff; > + mod_eoff = eoff; > + mod_sect = osect; > + update_entry(osect, mod, soff, mod_eoff); > + > + next; > +} > + > +# (4) Generate the output. > +# > +# Anchor records are added for each section that contains offset range data > +# records. They are added at an adjusted section base address (base << 1) to > +# ensure they come first in the second records (see update_entry() above for > +# more information). > +# > +# All entries are sorted by (adjusted) address to ensure that the output can be > +# parsed in strict ascending address order. > +# > +END { > + for (sect in count) { > + if (sect in sect_anchor) { > + idx = sprintf("%016x", sect_base[sect] * 2); > + entries[idx] = sect_anchor[sect]; > + } > + } > + > + n = asorti(entries, indices); > + for (i = 1; i <= n; i++) > + print entries[indices[i]]; > +} > -- > 2.45.2 >