They are implemented as a workqueue, which means that there are no guarantees of timing nor ordering. Signed-off-by: Benjamin Tissoires <bentiss@xxxxxxxxxx> --- changes in v3: - extracted the implementation in bpf_timer only, without bpf_timer_set_sleepable_cb() - rely on schedule_work() only, from bpf_timer_start() - add semaphore to ensure bpf_timer_work_cb() is accessing consistent data changes in v2 (compared to the one attaches to v1 0/9): - make use of a kfunc - add a (non-used) BPF_F_TIMER_SLEEPABLE - the callback is *not* called, it makes the kernel crashes --- include/uapi/linux/bpf.h | 4 +++ kernel/bpf/helpers.c | 92 ++++++++++++++++++++++++++++++++++++++++-------- 2 files changed, 82 insertions(+), 14 deletions(-) diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index d96708380e52..1fc7ecbd9d33 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -7421,10 +7421,14 @@ struct bpf_core_relo { * - BPF_F_TIMER_ABS: Timeout passed is absolute time, by default it is * relative to current time. * - BPF_F_TIMER_CPU_PIN: Timer will be pinned to the CPU of the caller. + * - BPF_F_TIMER_SLEEPABLE: Timer will run in a sleepable context, with + * no guarantees of ordering nor timing (consider this as being just + * offloaded immediately). */ enum { BPF_F_TIMER_ABS = (1ULL << 0), BPF_F_TIMER_CPU_PIN = (1ULL << 1), + BPF_F_TIMER_SLEEPABLE = (1ULL << 2), }; /* BPF numbers iterator state */ diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index 93edf730d288..f9add0abe40a 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -23,6 +23,7 @@ #include <linux/btf_ids.h> #include <linux/bpf_mem_alloc.h> #include <linux/kasan.h> +#include <linux/semaphore.h> #include "../../lib/kstrtox.h" @@ -1094,13 +1095,19 @@ const struct bpf_func_proto bpf_snprintf_proto = { * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. + * + * sleepable_lock protects only the setup of the workqueue, not the callback + * itself. This is done to ensure we don't run concurrently a free of the + * callback or the associated program. */ struct bpf_hrtimer { struct hrtimer timer; + struct work_struct work; struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; + struct semaphore sleepable_lock; }; /* the actual struct hidden inside uapi struct bpf_timer */ @@ -1113,6 +1120,55 @@ struct bpf_timer_kern { struct bpf_spin_lock lock; } __attribute__((aligned(8))); +static u32 __bpf_timer_compute_key(struct bpf_hrtimer *timer) +{ + struct bpf_map *map = timer->map; + void *value = timer->value; + + if (map->map_type == BPF_MAP_TYPE_ARRAY) { + struct bpf_array *array = container_of(map, struct bpf_array, map); + + /* compute the key */ + return ((char *)value - array->value) / array->elem_size; + } + + /* hash or lru */ + return *(u32 *)(value - round_up(map->key_size, 8)); +} + +static void bpf_timer_work_cb(struct work_struct *work) +{ + struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, work); + struct bpf_map *map = t->map; + void *value = t->value; + bpf_callback_t callback_fn; + u32 key; + + BTF_TYPE_EMIT(struct bpf_timer); + + down(&t->sleepable_lock); + + callback_fn = READ_ONCE(t->callback_fn); + if (!callback_fn) { + up(&t->sleepable_lock); + return; + } + + key = __bpf_timer_compute_key(t); + + /* prevent the callback to be freed by bpf_timer_cancel() while running + * so we can release the semaphore + */ + bpf_prog_inc(t->prog); + + up(&t->sleepable_lock); + + callback_fn((u64)(long)map, (u64)(long)&key, (u64)(long)value, 0, 0); + /* The verifier checked that return value is zero. */ + + bpf_prog_put(t->prog); +} + static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) @@ -1121,8 +1177,7 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) struct bpf_map *map = t->map; void *value = t->value; bpf_callback_t callback_fn; - void *key; - u32 idx; + u32 key; BTF_TYPE_EMIT(struct bpf_timer); callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); @@ -1136,17 +1191,9 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); - if (map->map_type == BPF_MAP_TYPE_ARRAY) { - struct bpf_array *array = container_of(map, struct bpf_array, map); - - /* compute the key */ - idx = ((char *)value - array->value) / array->elem_size; - key = &idx; - } else { /* hash or lru */ - key = value - round_up(map->key_size, 8); - } + key = __bpf_timer_compute_key(t); - callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); + callback_fn((u64)(long)map, (u64)(long)&key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); @@ -1191,6 +1238,8 @@ BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); + INIT_WORK(&t->work, bpf_timer_work_cb); + sema_init(&t->sleepable_lock, 1); t->timer.function = bpf_timer_cb; WRITE_ONCE(timer->timer, t); /* Guarantee the order between timer->timer and map->usercnt. So @@ -1245,6 +1294,7 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb ret = -EPERM; goto out; } + down(&t->sleepable_lock); prev = t->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() @@ -1261,6 +1311,7 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb t->prog = prog; } rcu_assign_pointer(t->callback_fn, callback_fn); + up(&t->sleepable_lock); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; @@ -1282,7 +1333,7 @@ BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, fla if (in_nmi()) return -EOPNOTSUPP; - if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) + if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN | BPF_F_TIMER_SLEEPABLE)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; @@ -1299,7 +1350,10 @@ BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, fla if (flags & BPF_F_TIMER_CPU_PIN) mode |= HRTIMER_MODE_PINNED; - hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); + if (flags & BPF_F_TIMER_SLEEPABLE) + schedule_work(&t->work); + else + hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; @@ -1346,13 +1400,21 @@ BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) ret = -EDEADLK; goto out; } + down(&t->sleepable_lock); drop_prog_refcnt(t); + up(&t->sleepable_lock); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); + + /* also cancel the sleepable work, but *do not* wait for + * it to finish if it was running as we might not be in a + * sleepable context + */ + ret = ret ?: cancel_work(&t->work); return ret; } @@ -1407,6 +1469,8 @@ void bpf_timer_cancel_and_free(void *val) */ if (this_cpu_read(hrtimer_running) != t) hrtimer_cancel(&t->timer); + + cancel_work_sync(&t->work); kfree(t); } -- 2.43.0