On Tue, May 23, 2023 at 09:46:21AM -0700, David Zheng wrote: > With IC_INTR_RX_FULL slave interrupt handler reads data in a loop until > RX FIFO is empty. When testing with the slave-eeprom, each transaction > has 2 bytes for address/index and 1 byte for value, the address byte > can be written as data byte due to dropping STOP condition. > > In the test below, the master continuously writes to the slave, first 2 > bytes are index, 3rd byte is value and follow by a STOP condition. > > i2c_write: i2c-3 #0 a=04b f=0000 l=3 [00-D1-D1] > i2c_write: i2c-3 #0 a=04b f=0000 l=3 [00-D2-D2] > i2c_write: i2c-3 #0 a=04b f=0000 l=3 [00-D3-D3] > > Upon receiving STOP condition slave eeprom would reset `idx_write_cnt` so > next 2 bytes can be treated as buffer index for upcoming transaction. > Supposedly the slave eeprom buffer would be written as > > EEPROM[0x00D1] = 0xD1 > EEPROM[0x00D2] = 0xD2 > EEPROM[0x00D3] = 0xD3 > > When CPU load is high the slave irq handler may not read fast enough, > the interrupt status can be seen as 0x204 with both DW_IC_INTR_STOP_DET > (0x200) and DW_IC_INTR_RX_FULL (0x4) bits. The slave device may see > the transactions below. > > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1794 : INTR_STAT=0x204 > 0x1 STATUS SLAVE_ACTIVITY=0x0 : RAW_INTR_STAT=0x1790 : INTR_STAT=0x200 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > 0x1 STATUS SLAVE_ACTIVITY=0x1 : RAW_INTR_STAT=0x1594 : INTR_STAT=0x4 > > After `D1` is received, read loop continues to read `00` which is the > first bype of next index. Since STOP condition is ignored by the loop, > eeprom buffer index increased to `D2` and `00` is written as value. > > So the slave eeprom buffer becomes > > EEPROM[0x00D1] = 0xD1 > EEPROM[0x00D2] = 0x00 > EEPROM[0x00D3] = 0xD3 > > The fix is to use `FIRST_DATA_BYTE` (bit 11) in `IC_DATA_CMD` to split > the transactions. The first index byte in this case would have bit 11 > set. Check this indication to inject I2C_SLAVE_WRITE_REQUESTED event > which will reset `idx_write_cnt` in slave eeprom. > > Signed-off-by: David Zheng <david.zheng@xxxxxxxxx> > --- Is it still v1? Otherwise you have wrong Subject (missing version) and missing changelog here. -- With Best Regards, Andy Shevchenko