Re: [PATCH v3 04/18] soc: qcom: Add Qualcomm minidump kernel driver

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 





On 5/4/2023 8:51 PM, Krzysztof Kozlowski wrote:
On 04/05/2023 14:38, Mukesh Ojha wrote:


On 5/4/2023 5:06 PM, Krzysztof Kozlowski wrote:
On 03/05/2023 19:02, Mukesh Ojha wrote:
Minidump is a best effort mechanism to collect useful and predefined
data for first level of debugging on end user devices running on
Qualcomm SoCs. It is built on the premise that System on Chip (SoC)
or subsystem part of SoC crashes, due to a range of hardware and
software bugs. Hence, the ability to collect accurate data is only
a best-effort. The data collected could be invalid or corrupted,
data collection itself could fail, and so on.

Qualcomm devices in engineering mode provides a mechanism for
generating full system ramdumps for post mortem debugging. But in some
cases it's however not feasible to capture the entire content of RAM.
The minidump mechanism provides the means for selecting region should
be included in the ramdump. The solution supports extracting the
ramdump/minidump produced either over USB or stored to an attached
storage device.

The core of minidump feature is part of Qualcomm's boot firmware code.
It initializes shared memory(SMEM), which is a part of DDR and
allocates a small section of it to minidump table i.e also called
global table of content (G-ToC). Each subsystem (APSS, ADSP, ...) has
their own table of segments to be included in the minidump, all
references from a descriptor in SMEM (G-ToC). Each segment/region has
some details like name, physical address and it's size etc. and it
could be anywhere scattered in the DDR.

Minidump kernel driver adds the capability to add linux region to be
dumped as part of ram dump collection. It provides appropriate symbol
to check its enablement and register client regions.

To simplify post mortem debugging, it creates and maintain an ELF
header as first region that gets updated upon registration
of a new region.

Signed-off-by: Mukesh Ojha <quic_mojha@xxxxxxxxxxx>
---
   drivers/soc/qcom/Kconfig         |  14 +
   drivers/soc/qcom/Makefile        |   1 +
   drivers/soc/qcom/qcom_minidump.c | 581 +++++++++++++++++++++++++++++++++++++++
   drivers/soc/qcom/smem.c          |   8 +
   include/soc/qcom/qcom_minidump.h |  61 +++-
   5 files changed, 663 insertions(+), 2 deletions(-)
   create mode 100644 drivers/soc/qcom/qcom_minidump.c

diff --git a/drivers/soc/qcom/Kconfig b/drivers/soc/qcom/Kconfig
index a491718..15c931e 100644
--- a/drivers/soc/qcom/Kconfig
+++ b/drivers/soc/qcom/Kconfig
@@ -279,4 +279,18 @@ config QCOM_INLINE_CRYPTO_ENGINE
   	tristate
   	select QCOM_SCM
+config QCOM_MINIDUMP
+	tristate "QCOM Minidump Support"
+	depends on ARCH_QCOM || COMPILE_TEST
+	select QCOM_SMEM
+	help
+	  Enablement of core minidump feature is controlled from boot firmware
+	  side, and this config allow linux to query and manages APPS minidump
+	  table.
+
+	  Client drivers can register their internal data structures and debug
+	  messages as part of the minidump region and when the SoC is crashed,
+	  these selective regions will be dumped instead of the entire DDR.
+	  This saves significant amount of time and/or storage space.
+
   endmenu
diff --git a/drivers/soc/qcom/Makefile b/drivers/soc/qcom/Makefile
index 0f43a88..1ebe081 100644
--- a/drivers/soc/qcom/Makefile
+++ b/drivers/soc/qcom/Makefile
@@ -33,3 +33,4 @@ obj-$(CONFIG_QCOM_RPMPD) += rpmpd.o
   obj-$(CONFIG_QCOM_KRYO_L2_ACCESSORS) +=	kryo-l2-accessors.o
   obj-$(CONFIG_QCOM_ICC_BWMON)	+= icc-bwmon.o
   obj-$(CONFIG_QCOM_INLINE_CRYPTO_ENGINE)	+= ice.o
+obj-$(CONFIG_QCOM_MINIDUMP) += qcom_minidump.o
diff --git a/drivers/soc/qcom/qcom_minidump.c b/drivers/soc/qcom/qcom_minidump.c
new file mode 100644
index 0000000..d107a86
--- /dev/null
+++ b/drivers/soc/qcom/qcom_minidump.c
@@ -0,0 +1,581 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
+ */
+
+#include <linux/elf.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/export.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/string.h>
+#include <linux/soc/qcom/smem.h>
+#include <soc/qcom/qcom_minidump.h>
+
+/**
+ * struct minidump_elfhdr - Minidump table elf header
+ * @ehdr: Elf main header
+ * @shdr: Section header
+ * @phdr: Program header
+ * @elf_offset: Section offset in elf
+ * @strtable_idx: String table current index position
+ */
+struct minidump_elfhdr {
+	struct elfhdr		*ehdr;
+	struct elf_shdr		*shdr;
+	struct elf_phdr		*phdr;
+	size_t			elf_offset;
+	size_t			strtable_idx;
+};
+
+/**
+ * struct minidump - Minidump driver private data
+ * @md_gbl_toc	: Global TOC pointer
+ * @md_apss_toc	: Application Subsystem TOC pointer
+ * @md_regions	: High level OS region base pointer
+ * @elf		: Minidump elf header
+ * @dev		: Minidump device
+ */
+struct minidump {
+	struct minidump_global_toc	*md_gbl_toc;
+	struct minidump_subsystem	*md_apss_toc;
+	struct minidump_region		*md_regions;
+	struct minidump_elfhdr		elf;
+	struct device			*dev;
+};
+
+/*
+ * In some of the Old Qualcomm devices, boot firmware statically allocates 300
+ * as total number of supported region (including all co-processors) in
+ * minidump table out of which linux was using 201. In future, this limitation
+ * from boot firmware might get removed by allocating the region dynamically.
+ * So, keep it compatible with older devices, we can keep the current limit for
+ * Linux to 201.
+ */
+#define MAX_NUM_ENTRIES	  201
+#define MAX_STRTBL_SIZE	  (MAX_NUM_ENTRIES * MAX_REGION_NAME_LENGTH)
+
+static struct minidump *__md;

No, no file scope or global scope statics.

Sorry, this is done as per recommendation given here [1] and this
matches both driver/firmware/qcom_scm.c and driver/soc/qcom/smem.c
implementations.

[1]
https://lore.kernel.org/lkml/f74dfcde-e59b-a9b3-9bbc-a8de644f6740@xxxxxxxxxx/

That's not true. You had the static already in v2, before Srini commented.

Look:
https://lore.kernel.org/lkml/1679491817-2498-5-git-send-email-quic_mojha@xxxxxxxxxxx/

+static struct minidump minidump;
+static DEFINE_MUTEX(minidump_lock);

We do not talk about the names.

I apologize for this.



+
+	if (size < sizeof(*mdgtoc) || !mdgtoc->status) {
+		ret = -EINVAL;
+		dev_err(&pdev->dev, "minidump table is not initialized: %d\n", ret);
+		return ret;
+	}
+
+	mutex_lock(&minidump_lock);
+	md->dev = &pdev->dev;
+	md->md_gbl_toc = mdgtoc;

What are you protecting here? It's not possible to have concurrent
access to md, is it?

Check qcom_apss_minidump_region_{register/unregister} and it is possible
that these API gets called parallel to this probe.

Wait, you say that something can modify local variable md before it is
assigned to __md? How?

No.


I agree, i made a mistake in not protecting __md in {register} API
but did it unregister API in this patch, which i have fixed in later patch.

No, you are protecting random things. Nothing will concurrently modify
md and &pdev->dev in this moment. mdgtoc is allocated above, so also
cannot by modified.

Otherwise show me the hypothetical scenario.

You are correct, it should just protect the assignment.
__md = md;

Thanks




+	ret = qcom_minidump_init_apss_subsystem(md);
+	if (ret) {
+		dev_err(&pdev->dev, "apss minidump initialization failed: %d\n", ret);
+		goto unlock;
+	}
+
+	__md = md;

No. This is a platform device, so it can have multiple instances.

It can have only one instance that is created from SMEM driver probe.

Anyone can instantiate more of them.... how did you solve it?




+	/* First entry would be ELF header */
+	ret = qcom_apss_minidump_add_elf_header();
+	if (ret) {
+		dev_err(&pdev->dev, "Failed to add elf header: %d\n", ret);
+		memset(md->md_apss_toc, 0, sizeof(struct minidump_subsystem));
+		__md = NULL;
+	}
+
+unlock:
+	mutex_unlock(&minidump_lock);
+	return ret;
+}
+
+static int qcom_minidump_remove(struct platform_device *pdev)
+{
+	memset(__md->md_apss_toc, 0, sizeof(struct minidump_subsystem));
+	__md = NULL;

Don't use __ in variable names. Drop it everywhere.

As i said above, this is being followed in other drivers, so followed
it here as per recommendation.

Let @srini comeback on this.

Which part of coding style recommends __ for driver code?

Will fix this.




+
+	return 0;
+}
+
+static struct platform_driver qcom_minidump_driver = {
+	.probe = qcom_minidump_probe,
+	.remove = qcom_minidump_remove,
+	.driver  = {
+		.name = "qcom-minidump",
+	},
+};
+
+module_platform_driver(qcom_minidump_driver);
+
+MODULE_DESCRIPTION("Qualcomm APSS minidump driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:qcom-minidump");
diff --git a/drivers/soc/qcom/smem.c b/drivers/soc/qcom/smem.c
index 6be7ea9..d459656 100644
--- a/drivers/soc/qcom/smem.c
+++ b/drivers/soc/qcom/smem.c
@@ -279,6 +279,7 @@ struct qcom_smem {
u32 item_count;
   	struct platform_device *socinfo;
+	struct platform_device *minidump;
   	struct smem_ptable *ptable;
   	struct smem_partition global_partition;
   	struct smem_partition partitions[SMEM_HOST_COUNT];
@@ -1151,12 +1152,19 @@ static int qcom_smem_probe(struct platform_device *pdev)
   	if (IS_ERR(smem->socinfo))
   		dev_dbg(&pdev->dev, "failed to register socinfo device\n");
+ smem->minidump = platform_device_register_data(&pdev->dev, "qcom-minidump",
+						      PLATFORM_DEVID_NONE, NULL,
+						      0);
+	if (IS_ERR(smem->minidump))
+		dev_dbg(&pdev->dev, "failed to register minidump device\n");
+
   	return 0;
   }
static int qcom_smem_remove(struct platform_device *pdev)
   {
   	platform_device_unregister(__smem->socinfo);
+	platform_device_unregister(__smem->minidump);

Wrong order. You registered first socinfo, right?

Any order is fine here, they are not dependent.
But, will fix this.

No, the order is always reversed from allocation. It does not matter if
they are dependent or not.

Ok


Best regards,
Krzysztof


-- Mukesh



[Index of Archives]     [Linux SPI]     [Linux Kernel]     [Linux ARM (vger)]     [Linux ARM MSM]     [Linux Omap]     [Linux Arm]     [Linux Tegra]     [Fedora ARM]     [Linux for Samsung SOC]     [eCos]     [Linux Fastboot]     [Gcc Help]     [Git]     [DCCP]     [IETF Announce]     [Security]     [Linux MIPS]     [Yosemite Campsites]

  Powered by Linux