On Wed, May 21, 2014 at 02:50:00PM -0700, Andrew Morton wrote: > On Wed, 21 May 2014 23:33:54 +0200 Peter Zijlstra <peterz@xxxxxxxxxxxxx> wrote: > > > On Wed, May 21, 2014 at 02:26:22PM -0700, Andrew Morton wrote: > > > > +static inline void > > > > +__prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, > > > > + struct page *page, int state, bool exclusive) > > > > > > Putting MM stuff into core waitqueue code is rather bad. I really > > > don't know how I'm going to explain this to my family. > > > > Right, so we could avoid all that and make the functions in mm/filemap.c > > rather large and opencode a bunch of wait.c stuff. > > > > The world won't end if we do it Mel's way and it's probably the most > efficient. But ugh. This stuff does raise the "it had better be a > useful patch" bar. > > > Which is pretty much what I initially pseudo proposed. > > Alternative solution is not to merge the patch ;) > While true, the overhead of the page_waitqueue lookups and unnecessary wakeups sucks even on small machines. Not only does it hit us during simple operations like dd to a file but we would hit it during page reclaim as well which is trylock_page/unlock_page intensive > > > > + __ClearPageWaiters(page); > > > > > > We're freeing the page - if someone is still waiting on it then we have > > > a huge bug? It's the mysterious collision thing again I hope? > > > > Yeah, so we only clear that bit when at 'unlock' we find there are no > > more pending waiters, so if the last unlock still had a waiter, we'll > > leave the bit set. > > Confused. If the last unlock had a waiter, that waiter will get woken > up so there are no waiters any more, so the last unlock clears the flag. > > um, how do we determine that there are no more waiters? By looking at > the waitqueue. But that waitqueue is hashed, so it may contain waiters > for other pages so we're screwed? But we could just go and wake up the > other-page waiters anyway and still clear PG_waiters? > > um2, we're using exclusive waitqueues so we can't (or don't) wake all > waiters, so we're screwed again? > > (This process is proving to be a hard way of writing Mel's changelog btw). > > If I'm still on track here, what happens if we switch to wake-all so we > can avoid the dangling flag? I doubt if there are many collisions on > that hash table? > > If there *are* a lot of collisions, I bet it's because a great pile of > threads are all waiting on the same page. If they're trying to lock > that page then wake-all is bad. But if they're just waiting for IO > completion (probable) then it's OK. > > I'll stop now. Rather than putting details in the changelog, here is an updated version that hopefully improves the commentary to the point where it's actually clear. ---8<--- From: Nick Piggin <npiggin@xxxxxxx> Subject: [PATCH] mm: filemap: Avoid unnecessary barriers and waitqueue lookups in unlock_page fastpath v6 Changelog since v5 o __always_inline where appropriate (peterz) o Documentation (akpm) Changelog since v4 o Remove dependency on io_schedule_timeout o Push waiting logic down into waitqueue This patch introduces a new page flag for 64-bit capable machines, PG_waiters, to signal there are processes waiting on PG_lock or PG_writeback and uses it to avoid memory barriers and waitqueue hash lookup in the unlock_page fastpath. This adds a few branches to the fast path but avoids bouncing a dirty cache line between CPUs. 32-bit machines always take the slow path but the primary motivation for this patch is large machines so I do not think that is a concern. The test case used to evaulate this is a simple dd of a large file done multiple times with the file deleted on each iterations. The size of the file is 1/10th physical memory to avoid dirty page balancing. In the async case it will be possible that the workload completes without even hitting the disk and will have variable results but highlight the impact of mark_page_accessed for async IO. The sync results are expected to be more stable. The exception is tmpfs where the normal case is for the "IO" to not hit the disk. The test machine was single socket and UMA to avoid any scheduling or NUMA artifacts. Throughput and wall times are presented for sync IO, only wall times are shown for async as the granularity reported by dd and the variability is unsuitable for comparison. As async results were variable do to writback timings, I'm only reporting the maximum figures. The sync results were stable enough to make the mean and stddev uninteresting. The performance results are reported based on a run with no profiling. Profile data is based on a separate run with oprofile running. The kernels being compared are "accessed-v2" which is the patch series up to this patch where as lockpage-v2 includes this patch. async dd 3.15.0-rc5 3.15.0-rc5 mmotm lockpage-v5 btrfs Max ddtime 0.5863 ( 0.00%) 0.5621 ( 4.14%) ext3 Max ddtime 1.4870 ( 0.00%) 1.4609 ( 1.76%) ext4 Max ddtime 1.0440 ( 0.00%) 1.0376 ( 0.61%) tmpfs Max ddtime 0.3541 ( 0.00%) 0.3486 ( 1.54%) xfs Max ddtime 0.4995 ( 0.00%) 0.4834 ( 3.21%) A separate run with profiles showed this samples percentage ext3 225851 2.3180 vmlinux-3.15.0-rc5-mmotm test_clear_page_writeback ext3 106848 1.0966 vmlinux-3.15.0-rc5-mmotm __wake_up_bit ext3 71849 0.7374 vmlinux-3.15.0-rc5-mmotm page_waitqueue ext3 40319 0.4138 vmlinux-3.15.0-rc5-mmotm unlock_page ext3 26243 0.2693 vmlinux-3.15.0-rc5-mmotm end_page_writeback ext3 178777 1.7774 vmlinux-3.15.0-rc5-lockpage-v5 test_clear_page_writeback ext3 67702 0.6731 vmlinux-3.15.0-rc5-lockpage-v5 unlock_page ext3 22357 0.2223 vmlinux-3.15.0-rc5-lockpage-v5 end_page_writeback ext3 11131 0.1107 vmlinux-3.15.0-rc5-lockpage-v5 __wake_up_bit ext3 6360 0.0632 vmlinux-3.15.0-rc5-lockpage-v5 __wake_up_page_bit ext3 1660 0.0165 vmlinux-3.15.0-rc5-lockpage-v5 page_waitqueue The profiles show a clear reduction in waitqueue and wakeup functions. Note that end_page_writeback costs the same as the savings there are due to reduced calls to __wake_up_bit and page_waitqueue so there is no obvious direct savings. The cost of unlock_page is higher as it's checking PageWaiters but it is offset by reduced numbers of calls to page_waitqueue and _wake_up_bit. There is a similar story told for each of the filesystems. Note that for workloads that contend heavily on the page lock that unlock_page may increase in cost as it has to clear PG_waiters so while the typical case should be much faster, the worst case costs are now higher. This is also reflected in the time taken to mmap a range of pages. These are the results for xfs only but the other filesystems tell a similar story. 3.15.0-rc5 3.15.0-rc5 mmotm lockpage-v5 Procs 107M 423.0000 ( 0.00%) 409.0000 ( 3.31%) Procs 214M 847.0000 ( 0.00%) 823.0000 ( 2.83%) Procs 322M 1296.0000 ( 0.00%) 1232.0000 ( 4.94%) Procs 429M 1692.0000 ( 0.00%) 1644.0000 ( 2.84%) Procs 536M 2137.0000 ( 0.00%) 2057.0000 ( 3.74%) Procs 644M 2542.0000 ( 0.00%) 2472.0000 ( 2.75%) Procs 751M 2953.0000 ( 0.00%) 2872.0000 ( 2.74%) Procs 859M 3360.0000 ( 0.00%) 3310.0000 ( 1.49%) Procs 966M 3770.0000 ( 0.00%) 3724.0000 ( 1.22%) Procs 1073M 4220.0000 ( 0.00%) 4114.0000 ( 2.51%) Procs 1181M 4638.0000 ( 0.00%) 4546.0000 ( 1.98%) Procs 1288M 5038.0000 ( 0.00%) 4940.0000 ( 1.95%) Procs 1395M 5481.0000 ( 0.00%) 5431.0000 ( 0.91%) Procs 1503M 5940.0000 ( 0.00%) 5832.0000 ( 1.82%) Procs 1610M 6316.0000 ( 0.00%) 6204.0000 ( 1.77%) Procs 1717M 6749.0000 ( 0.00%) 6799.0000 ( -0.74%) Procs 1825M 7323.0000 ( 0.00%) 7082.0000 ( 3.29%) Procs 1932M 7694.0000 ( 0.00%) 7452.0000 ( 3.15%) Procs 2040M 8079.0000 ( 0.00%) 7927.0000 ( 1.88%) Procs 2147M 8495.0000 ( 0.00%) 8360.0000 ( 1.59%) samples percentage xfs 78334 1.3089 vmlinux-3.15.0-rc5-mmotm page_waitqueue xfs 55910 0.9342 vmlinux-3.15.0-rc5-mmotm unlock_page xfs 45120 0.7539 vmlinux-3.15.0-rc5-mmotm __wake_up_bit xfs 41414 0.6920 vmlinux-3.15.0-rc5-mmotm test_clear_page_writeback xfs 4823 0.0806 vmlinux-3.15.0-rc5-mmotm end_page_writeback xfs 100864 1.7063 vmlinux-3.15.0-rc5-lockpage-v5 unlock_page xfs 52547 0.8889 vmlinux-3.15.0-rc5-lockpage-v5 test_clear_page_writeback xfs 5031 0.0851 vmlinux-3.15.0-rc5-lockpage-v5 end_page_writeback xfs 1938 0.0328 vmlinux-3.15.0-rc5-lockpage-v5 __wake_up_bit xfs 9 1.5e-04 vmlinux-3.15.0-rc5-lockpage-v5 __wake_up_page_bit xfs 7 1.2e-04 vmlinux-3.15.0-rc5-lockpage-v5 page_waitqueue [jack@xxxxxxx: Fix add_page_wait_queue] [mhocko@xxxxxxx: Use sleep_on_page_killable in __wait_on_page_locked_killable] [steiner@xxxxxxx: Do not update struct page unnecessarily] Signed-off-by: Nick Piggin <npiggin@xxxxxxx> Signed-off-by: Mel Gorman <mgorman@xxxxxxx> --- include/linux/page-flags.h | 18 ++++++ include/linux/wait.h | 8 +++ kernel/sched/wait.c | 137 ++++++++++++++++++++++++++++++++++----------- mm/filemap.c | 25 +++++---- mm/page_alloc.c | 1 + mm/swap.c | 12 ++++ mm/vmscan.c | 7 +++ 7 files changed, 165 insertions(+), 43 deletions(-) diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h index 7baf0fe..b697e4f 100644 --- a/include/linux/page-flags.h +++ b/include/linux/page-flags.h @@ -87,6 +87,7 @@ enum pageflags { PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ #ifdef CONFIG_PAGEFLAGS_EXTENDED + PG_waiters, /* Page has PG_locked waiters. */ PG_head, /* A head page */ PG_tail, /* A tail page */ #else @@ -213,6 +214,22 @@ PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) __PAGEFLAG(SlobFree, slob_free) +#ifdef CONFIG_PAGEFLAGS_EXTENDED +PAGEFLAG(Waiters, waiters) __CLEARPAGEFLAG(Waiters, waiters) + TESTCLEARFLAG(Waiters, waiters) +#define __PG_WAITERS (1 << PG_waiters) +#else +/* Always fallback to slow path on 32-bit */ +static inline bool PageWaiters(struct page *page) +{ + return true; +} +static inline void __ClearPageWaiters(struct page *page) {} +static inline void ClearPageWaiters(struct page *page) {} +static inline void SetPageWaiters(struct page *page) {} +#define __PG_WAITERS 0 +#endif /* CONFIG_PAGEFLAGS_EXTENDED */ + /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. @@ -509,6 +526,7 @@ static inline void ClearPageSlabPfmemalloc(struct page *page) 1 << PG_writeback | 1 << PG_reserved | \ 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \ + __PG_WAITERS | \ __PG_COMPOUND_LOCK) /* diff --git a/include/linux/wait.h b/include/linux/wait.h index bd68819..9226724 100644 --- a/include/linux/wait.h +++ b/include/linux/wait.h @@ -141,14 +141,21 @@ __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old) list_del(&old->task_list); } +struct page; + void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key); void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key); void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key); void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr); void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr); void __wake_up_bit(wait_queue_head_t *, void *, int); +void __wake_up_page_bit(wait_queue_head_t *, struct page *page, void *, int); int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned); +int __wait_on_page_bit(wait_queue_head_t *, struct wait_bit_queue *, + struct page *page, int (*)(void *), unsigned); int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned); +int __wait_on_page_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, + struct page *page, int (*)(void *), unsigned); void wake_up_bit(void *, int); void wake_up_atomic_t(atomic_t *); int out_of_line_wait_on_bit(void *, int, int (*)(void *), unsigned); @@ -822,6 +829,7 @@ void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state); void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state); long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state); void finish_wait(wait_queue_head_t *q, wait_queue_t *wait); +void finish_wait_page(wait_queue_head_t *q, wait_queue_t *wait, struct page *page); void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key); int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key); int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key); diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c index 0ffa20a..bd0495a92 100644 --- a/kernel/sched/wait.c +++ b/kernel/sched/wait.c @@ -167,31 +167,47 @@ EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ * stops them from bleeding out - it would still allow subsequent * loads to move into the critical region). */ -void -prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) +static __always_inline void +__prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, + struct page *page, int state, bool exclusive) { unsigned long flags; - wait->flags &= ~WQ_FLAG_EXCLUSIVE; spin_lock_irqsave(&q->lock, flags); - if (list_empty(&wait->task_list)) - __add_wait_queue(q, wait); + + /* + * pages are hashed on a waitqueue that is expensive to lookup. + * __wait_on_page_bit and __wait_on_page_bit_lock pass in a page + * to set PG_waiters here. A PageWaiters() can then be used at + * unlock time or when writeback completes to detect if there + * are any potential waiters that justify a lookup. + */ + if (page && !PageWaiters(page)) + SetPageWaiters(page); + if (list_empty(&wait->task_list)) { + if (exclusive) { + wait->flags |= WQ_FLAG_EXCLUSIVE; + __add_wait_queue_tail(q, wait); + } else { + wait->flags &= ~WQ_FLAG_EXCLUSIVE; + __add_wait_queue(q, wait); + } + } set_current_state(state); spin_unlock_irqrestore(&q->lock, flags); } + +void +prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ + return __prepare_to_wait(q, wait, NULL, state, false); +} EXPORT_SYMBOL(prepare_to_wait); void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) { - unsigned long flags; - - wait->flags |= WQ_FLAG_EXCLUSIVE; - spin_lock_irqsave(&q->lock, flags); - if (list_empty(&wait->task_list)) - __add_wait_queue_tail(q, wait); - set_current_state(state); - spin_unlock_irqrestore(&q->lock, flags); + return __prepare_to_wait(q, wait, NULL, state, true); } EXPORT_SYMBOL(prepare_to_wait_exclusive); @@ -219,16 +235,8 @@ long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) } EXPORT_SYMBOL(prepare_to_wait_event); -/** - * finish_wait - clean up after waiting in a queue - * @q: waitqueue waited on - * @wait: wait descriptor - * - * Sets current thread back to running state and removes - * the wait descriptor from the given waitqueue if still - * queued. - */ -void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) +static __always_inline void __finish_wait(wait_queue_head_t *q, + wait_queue_t *wait, struct page *page) { unsigned long flags; @@ -249,9 +257,33 @@ void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) if (!list_empty_careful(&wait->task_list)) { spin_lock_irqsave(&q->lock, flags); list_del_init(&wait->task_list); + + /* + * Clear PG_waiters if the waitqueue is no longer active. There + * is no guarantee that a page with no waiters will get cleared + * as there may be unrelated pages hashed to sleep on the same + * queue. Accurate detection would require a counter but + * collisions are expected to be rare. + */ + if (page && !waitqueue_active(q)) + ClearPageWaiters(page); spin_unlock_irqrestore(&q->lock, flags); } } + +/** + * finish_wait - clean up after waiting in a queue + * @q: waitqueue waited on + * @wait: wait descriptor + * + * Sets current thread back to running state and removes + * the wait descriptor from the given waitqueue if still + * queued. + */ +void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) +{ + return __finish_wait(q, wait, NULL); +} EXPORT_SYMBOL(finish_wait); /** @@ -313,24 +345,39 @@ int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) EXPORT_SYMBOL(wake_bit_function); /* - * To allow interruptible waiting and asynchronous (i.e. nonblocking) - * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are - * permitted return codes. Nonzero return codes halt waiting and return. + * waits on a bit to be cleared (see wait_on_bit in wait.h for details. + * A page is optionally provided when used to wait on the PG_locked or + * PG_writeback bit. By setting PG_waiters a lookup of the waitqueue + * can be avoided during unlock_page or end_page_writeback. */ int __sched -__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, +__wait_on_page_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, + struct page *page, int (*action)(void *), unsigned mode) { int ret = 0; do { - prepare_to_wait(wq, &q->wait, mode); + __prepare_to_wait(wq, &q->wait, page, mode, false); if (test_bit(q->key.bit_nr, q->key.flags)) ret = (*action)(q->key.flags); } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); - finish_wait(wq, &q->wait); + __finish_wait(wq, &q->wait, page); return ret; } + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) + * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are + * permitted return codes. Nonzero return codes halt waiting and return. + */ +int __sched +__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, + int (*action)(void *), unsigned mode) +{ + return __wait_on_page_bit(wq, q, NULL, action, mode); +} + EXPORT_SYMBOL(__wait_on_bit); int __sched out_of_line_wait_on_bit(void *word, int bit, @@ -344,13 +391,14 @@ int __sched out_of_line_wait_on_bit(void *word, int bit, EXPORT_SYMBOL(out_of_line_wait_on_bit); int __sched -__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, +__wait_on_page_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, + struct page *page, int (*action)(void *), unsigned mode) { do { int ret; - prepare_to_wait_exclusive(wq, &q->wait, mode); + __prepare_to_wait(wq, &q->wait, page, mode, true); if (!test_bit(q->key.bit_nr, q->key.flags)) continue; ret = action(q->key.flags); @@ -359,9 +407,16 @@ __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, abort_exclusive_wait(wq, &q->wait, mode, &q->key); return ret; } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); - finish_wait(wq, &q->wait); + __finish_wait(wq, &q->wait, page); return 0; } + +int __sched +__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, + int (*action)(void *), unsigned mode) +{ + return __wait_on_page_bit_lock(wq, q, NULL, action, mode); +} EXPORT_SYMBOL(__wait_on_bit_lock); int __sched out_of_line_wait_on_bit_lock(void *word, int bit, @@ -374,6 +429,24 @@ int __sched out_of_line_wait_on_bit_lock(void *word, int bit, } EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); +void __wake_up_page_bit(wait_queue_head_t *wqh, struct page *page, void *word, int bit) +{ + struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); + unsigned long flags; + + /* + * Unlike __wake_up_bit it is necessary to check waitqueue_active to be + * checked under the wqh->lock to avoid races with parallel additions + * to the waitqueue. Otherwise races could result in lost wakeups + */ + spin_lock_irqsave(&wqh->lock, flags); + if (waitqueue_active(wqh)) + __wake_up_common(wqh, TASK_NORMAL, 1, 0, &key); + else + ClearPageWaiters(page); + spin_unlock_irqrestore(&wqh->lock, flags); +} + void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) { struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); diff --git a/mm/filemap.c b/mm/filemap.c index 263cffe..07633a4 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -682,9 +682,9 @@ static wait_queue_head_t *page_waitqueue(struct page *page) return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; } -static inline void wake_up_page(struct page *page, int bit) +static inline void wake_up_page(struct page *page, int bit_nr) { - __wake_up_bit(page_waitqueue(page), &page->flags, bit); + __wake_up_page_bit(page_waitqueue(page), page, &page->flags, bit_nr); } void wait_on_page_bit(struct page *page, int bit_nr) @@ -692,8 +692,8 @@ void wait_on_page_bit(struct page *page, int bit_nr) DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); if (test_bit(bit_nr, &page->flags)) - __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, - TASK_UNINTERRUPTIBLE); + __wait_on_page_bit(page_waitqueue(page), &wait, page, + sleep_on_page, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_on_page_bit); @@ -704,7 +704,7 @@ int wait_on_page_bit_killable(struct page *page, int bit_nr) if (!test_bit(bit_nr, &page->flags)) return 0; - return __wait_on_bit(page_waitqueue(page), &wait, + return __wait_on_page_bit(page_waitqueue(page), &wait, page, sleep_on_page_killable, TASK_KILLABLE); } @@ -743,7 +743,8 @@ void unlock_page(struct page *page) VM_BUG_ON_PAGE(!PageLocked(page), page); clear_bit_unlock(PG_locked, &page->flags); smp_mb__after_atomic(); - wake_up_page(page, PG_locked); + if (unlikely(PageWaiters(page))) + wake_up_page(page, PG_locked); } EXPORT_SYMBOL(unlock_page); @@ -769,7 +770,8 @@ void end_page_writeback(struct page *page) BUG(); smp_mb__after_atomic(); - wake_up_page(page, PG_writeback); + if (unlikely(PageWaiters(page))) + wake_up_page(page, PG_writeback); } EXPORT_SYMBOL(end_page_writeback); @@ -806,8 +808,8 @@ void __lock_page(struct page *page) { DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); - __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, - TASK_UNINTERRUPTIBLE); + __wait_on_page_bit_lock(page_waitqueue(page), &wait, page, + sleep_on_page, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__lock_page); @@ -815,9 +817,10 @@ int __lock_page_killable(struct page *page) { DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); - return __wait_on_bit_lock(page_waitqueue(page), &wait, - sleep_on_page_killable, TASK_KILLABLE); + return __wait_on_page_bit_lock(page_waitqueue(page), &wait, page, + sleep_on_page, TASK_KILLABLE); } + EXPORT_SYMBOL_GPL(__lock_page_killable); int __lock_page_or_retry(struct page *page, struct mm_struct *mm, diff --git a/mm/page_alloc.c b/mm/page_alloc.c index cd1f005..ebb947d 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -6603,6 +6603,7 @@ static const struct trace_print_flags pageflag_names[] = { {1UL << PG_private_2, "private_2" }, {1UL << PG_writeback, "writeback" }, #ifdef CONFIG_PAGEFLAGS_EXTENDED + {1UL << PG_waiters, "waiters" }, {1UL << PG_head, "head" }, {1UL << PG_tail, "tail" }, #else diff --git a/mm/swap.c b/mm/swap.c index 9e8e347..1581dbf 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -67,6 +67,10 @@ static void __page_cache_release(struct page *page) static void __put_single_page(struct page *page) { __page_cache_release(page); + + /* See release_pages on why this clear may be necessary */ + __ClearPageWaiters(page); + free_hot_cold_page(page, false); } @@ -916,6 +920,14 @@ void release_pages(struct page **pages, int nr, bool cold) /* Clear Active bit in case of parallel mark_page_accessed */ __ClearPageActive(page); + /* + * pages are hashed on a waitqueue so there may be collisions. + * When waiters are woken the waitqueue is checked but + * unrelated pages on the queue can leave the bit set. Clear + * it here if that happens. + */ + __ClearPageWaiters(page); + list_add(&page->lru, &pages_to_free); } if (zone) diff --git a/mm/vmscan.c b/mm/vmscan.c index 7f85041..d7a4969 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1096,6 +1096,9 @@ static unsigned long shrink_page_list(struct list_head *page_list, * waiting on the page lock, because there are no references. */ __clear_page_locked(page); + + /* See release_pages on why this clear may be necessary */ + __ClearPageWaiters(page); free_it: nr_reclaimed++; @@ -1427,6 +1430,8 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) if (put_page_testzero(page)) { __ClearPageLRU(page); __ClearPageActive(page); + /* See release_pages on why this clear may be necessary */ + __ClearPageWaiters(page); del_page_from_lru_list(page, lruvec, lru); if (unlikely(PageCompound(page))) { @@ -1650,6 +1655,8 @@ static void move_active_pages_to_lru(struct lruvec *lruvec, if (put_page_testzero(page)) { __ClearPageLRU(page); __ClearPageActive(page); + /* See release_pages on why this clear may be necessary */ + __ClearPageWaiters(page); del_page_from_lru_list(page, lruvec, lru); if (unlikely(PageCompound(page))) { -- To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html