On Thu, Jul 25, 2013 at 04:23:39PM +0800, zwu.kernel@xxxxxxxxx wrote: > From: Zhi Yong Wu <wuzhy@xxxxxxxxxxxxxxxxxx> > > It can take a long time to run log recovery operation because it is > single threaded and is bound by read latency. We can find that it took > most of the time to wait for the read IO to occur, so if one object > readahead is introduced to log recovery, it will obviously reduce the > log recovery time. > > In dirty log case as below: > data device: 0xfd10 > log device: 0xfd10 daddr: 20480032 length: 20480 > > log tail: 7941 head: 11077 state: <DIRTY> That's only a small log (10MB). As I've said on irc, readahead won't show any real difference on this and you need to be testing with large logs. > > This dirty ratio is about 15%. I am trying to do tests in larger scale > and dirtier filesystem environment. > > Log recovery time stat: > > w/o this patch w/ this patch > real 0m1.051s 0m0.965s > sys 0m0.033s 0m0.035s > > iowait 0m1.018s 0m0.930s Well, it's not made much of a difference there. That's probably within the noise of repeated log recovery runs. My simple test is: $ cat recovery_time.sh #!/bin/bash cd /home/dave/src/compilebench-0.6/ mkfs.xfs -f /dev/vdc; mount /dev/vdc /mnt/scratch chmod 777 /mnt/scratch; ./compilebench --no-sync -D /mnt/scratch & sleep 55 /home/dave/src/xfstests-dev/src/godown /mnt/scratch umount /mnt/scratch xfs_logprint -t /dev/vdc |head -20 time mount /dev/vdc /mnt/scratch umount /mnt/scratch $ And the recovery time from this is between 15-17s: .... log device: 0xfd20 daddr: 107374182032 length: 4173824 ^^^^^^^ almost 2GB log tail: 19288 head: 264809 state: <DIRTY> .... real 0m17.913s user 0m0.000s sys 0m2.381s And runs at 3-4000 read IOPs for most of that time. It's largely IO bound, even on SSDs. With your patch: log tail: 35871 head: 308393 state: <DIRTY> real 0m12.715s user 0m0.000s sys 0m2.247s And it peaked at ~5000 read IOPS. It's definitely an improvement, but there's a lot of dead time still spent waiting for IO that we should be able to remove. Let's have a look at the code... > +STATIC void > +xlog_recover_inode_ra_pass2( > + struct xlog *log, > + struct xlog_recover_item *item) > +{ > + xfs_inode_log_format_t *in_f; > + xfs_mount_t *mp = log->l_mp; > + int error; > + int need_free = 0; > + > + if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { > + in_f = item->ri_buf[0].i_addr; > + } else { > + in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); > + need_free = 1; > + error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); > + if (error) > + goto error; > + } I'd just put the conversion buffer on stack and avoid the need to alloc/free memory here. There's plenty of stack space available during recovery here, so let's use it to keep the overhead of readahead down. > +STATIC void > +xlog_recover_dquot_ra_pass2( > + struct xlog *log, > + struct xlog_recover_item *item) > +{ > + xfs_mount_t *mp = log->l_mp; > + xfs_buf_t *bp; > + struct xfs_disk_dquot *recddq; > + int error; > + xfs_dq_logformat_t *dq_f; > + uint type; > + > + > + if (mp->m_qflags == 0) > + return; > + > + recddq = item->ri_buf[1].i_addr; > + if (recddq == NULL) > + return; > + if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) > + return; > + > + type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); > + ASSERT(type); > + if (log->l_quotaoffs_flag & type) > + return; > + > + dq_f = item->ri_buf[0].i_addr; > + ASSERT(dq_f); > + error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, > + "xlog_recover_dquot_ra_pass2 (log copy)"); > + if (error) > + return; > + ASSERT(dq_f->qlf_len == 1); > + > + error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, > + XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, > + NULL); > + if (!error) > + xfs_buf_relse(bp); > +} That's not doing readahead - that's an integrity check followed by a blocking read. Shouldn't it just be calling xfs_buf_readahead() on dq_f->qlf_blkno/dq_f->qlf_len, after checking whether it had been cancelled? > STATIC int > xlog_recover_commit_pass1( > struct xlog *log, > @@ -3140,10 +3255,14 @@ xlog_recover_commit_pass2( > struct xlog *log, > struct xlog_recover *trans, > struct list_head *buffer_list, > - struct xlog_recover_item *item) > + struct xlog_recover_item *item, > + struct xlog_recover_item *next_item) > { > trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); > > + if (next_item) > + xlog_recover_ra_pass2(log, next_item); > + Ah, that explains the limited improvement - it's only doing readahead of a single item at a time. IOWs, we are completing recovery of the current object before IO completion of the next object has occurred. This generally means the read-ahead queue is not deep enough... > switch (ITEM_TYPE(item)) { > case XFS_LI_BUF: > return xlog_recover_buffer_pass2(log, buffer_list, item); > @@ -3181,7 +3300,7 @@ xlog_recover_commit_trans( > int pass) > { > int error = 0, error2; > - xlog_recover_item_t *item; > + xlog_recover_item_t *item, *next_item, *temp_item; > LIST_HEAD (buffer_list); > > hlist_del(&trans->r_list); > @@ -3190,14 +3309,18 @@ xlog_recover_commit_trans( > if (error) > return error; > > - list_for_each_entry(item, &trans->r_itemq, ri_list) { > + list_for_each_entry_safe(item, temp_item, &trans->r_itemq, ri_list) { > switch (pass) { > case XLOG_RECOVER_PASS1: > error = xlog_recover_commit_pass1(log, trans, item); > break; > case XLOG_RECOVER_PASS2: > + if (&temp_item->ri_list != &trans->r_itemq) > + next_item = temp_item; > + else > + next_item = NULL; > error = xlog_recover_commit_pass2(log, trans, > - &buffer_list, item); > + &buffer_list, item, next_item); Ok, so you've based the readahead on the transaction item list having a next pointer. What I think you should do is turn this into a readahead queue by moving objects to a new list. i.e. list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { case XLOG_RECOVER_PASS2: if (ra_qdepth++ >= MAX_QDEPTH) { recover_items(log, trans, &buffer_list, &ra_item_list); ra_qdepth = 0; } else { xlog_recover_item_readahead(log, item); list_move_tail(&item->ri_list, &ra_item_list); } break; ... } } if (!list_empty(&ra_item_list)) recover_items(log, trans, &buffer_list, &ra_item_list); I'd suggest that a queue depth somewhere between 10 and 100 will be necessary to keep enough IO in flight to keep the pipeline full and prevent recovery from having to wait on IO... Cheers, Dave. -- Dave Chinner david@xxxxxxxxxxxxx -- To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html