The existing CRC32c implementation uses Sarwate's algorithm to calculate the code one byte at a time. Using slicing-by-8, we can process buffers 8 bytes at a time, for a substantial increase in performance. Signed-off-by: Darrick J. Wong <djwong@xxxxxxxxxx> --- crypto/Makefile | 11 + crypto/crc32c.c | 635 ++++++++++++++++++++++++++++++++++++++++++-------- crypto/crc32c_defs.h | 34 +++ 3 files changed, 576 insertions(+), 104 deletions(-) create mode 100644 crypto/crc32c_defs.h diff --git a/crypto/Makefile b/crypto/Makefile index ce5a813..00811ef 100644 --- a/crypto/Makefile +++ b/crypto/Makefile @@ -94,3 +94,14 @@ obj-$(CONFIG_CRYPTO_USER_API_SKCIPHER) += algif_skcipher.o # obj-$(CONFIG_XOR_BLOCKS) += xor.o obj-$(CONFIG_ASYNC_CORE) += async_tx/ + +hostprogs-y := gen_crc32ctable +clean-files := crc32ctable.h + +$(obj)/crc32c.o: $(obj)/crc32c_table.h + +quiet_cmd_crc32c = GEN $@ + cmd_crc32c = $< > $@ + +$(obj)/crc32c_table.h: $(obj)/gen_crc32ctable + $(call cmd,crc32c) diff --git a/crypto/crc32c.c b/crypto/crc32c.c index 3f9ad28..d18f6a1 100644 --- a/crypto/crc32c.c +++ b/crypto/crc32c.c @@ -33,6 +33,35 @@ * Software Foundation; either version 2 of the License, or (at your option) * any later version. * + * The current crc32c implementation is adapted from Bob Pearson's slice-by-8 + * crc32 kernel patch from mid-2011. + * + * August 26, 2011 Darrick J. Wong <djwong at us.ibm.com> + * Reuse Bob Pearson's slice-by-8 implementation for e2fsprogs. + * + * July 20, 2011 Bob Pearson <rpearson at systemfabricworks.com> + * added slice by 8 algorithm to the existing conventional and + * slice by 4 algorithms. + * + * Oct 15, 2000 Matt Domsch <Matt_Domsch@xxxxxxxx> + * Nicer crc32 functions/docs submitted by linux@xxxxxxxxxxx. Thanks! + * Code was from the public domain, copyright abandoned. Code was + * subsequently included in the kernel, thus was re-licensed under the + * GNU GPL v2. + * + * Oct 12, 2000 Matt Domsch <Matt_Domsch@xxxxxxxx> + * Same crc32 function was used in 5 other places in the kernel. + * I made one version, and deleted the others. + * There are various incantations of crc32(). Some use a seed of 0 or ~0. + * Some xor at the end with ~0. The generic crc32() function takes + * seed as an argument, and doesn't xor at the end. Then individual + * users can do whatever they need. + * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. + * fs/jffs2 uses seed 0, doesn't xor with ~0. + * fs/partitions/efi.c uses seed ~0, xor's with ~0. + * + * This source code is licensed under the GNU General Public License, + * Version 2. See the file COPYING for more details. */ #include <crypto/internal/hash.h> @@ -40,6 +69,7 @@ #include <linux/module.h> #include <linux/string.h> #include <linux/kernel.h> +#include "crc32c_defs.h" #define CHKSUM_BLOCK_SIZE 1 #define CHKSUM_DIGEST_SIZE 4 @@ -52,92 +82,398 @@ struct chksum_desc_ctx { u32 crc; }; -/* - * This is the CRC-32C table - * Generated with: - * width = 32 bits - * poly = 0x1EDC6F41 - * reflect input bytes = true - * reflect output bytes = true - */ +#if CRC_LE_BITS > 8 +# define tole(x) (__force u32) __constant_cpu_to_le32(x) +#else +# define tole(x) (x) +#endif -static const u32 crc32c_table[256] = { - 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L, - 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL, - 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL, - 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L, - 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL, - 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L, - 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L, - 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL, - 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL, - 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L, - 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L, - 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL, - 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L, - 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL, - 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL, - 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L, - 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L, - 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L, - 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L, - 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L, - 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L, - 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L, - 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L, - 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L, - 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L, - 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L, - 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L, - 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L, - 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L, - 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L, - 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L, - 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L, - 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL, - 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L, - 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L, - 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL, - 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L, - 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL, - 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL, - 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L, - 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L, - 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL, - 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL, - 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L, - 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL, - 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L, - 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L, - 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL, - 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L, - 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL, - 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL, - 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L, - 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL, - 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L, - 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L, - 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL, - 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL, - 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L, - 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L, - 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL, - 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L, - 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL, - 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL, - 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L -}; +#if CRC_BE_BITS > 8 +# define tobe(x) (__force u32) __constant_cpu_to_be32(x) +#else +# define tobe(x) (x) +#endif -/* - * Steps through buffer one byte at at time, calculates reflected - * crc using table. - */ +#include "crc32c_table.h" + +#if CRC_LE_BITS == 32 +/* slice by 4 algorithm */ +static u32 crc32c_le_body(u32 crc, u8 const *buf, size_t len) +{ + const u8 *p8; + const u32 *p32; + size_t init_bytes; + size_t words; + size_t end_bytes; + size_t i; + u32 q; + u8 i0, i1, i2, i3; + + crc = (__force u32) __cpu_to_le32(crc); + + /* unroll loop into 'init_bytes' odd bytes followed by + * 'words' aligned 4 byte words followed by + * 'end_bytes' odd bytes at the end */ + p8 = buf; + p32 = (u32 *)PTR_ALIGN(p8, 4); + init_bytes = min((uintptr_t)p32 - (uintptr_t)p8, len); + words = (len - init_bytes) >> 2; + end_bytes = (len - init_bytes) & 3; + + for (i = 0; i < init_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_le[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_le[i0] ^ (crc << 8); +#endif + } + + /* using pre-increment below slightly faster */ + p32--; -static u32 crc32c(u32 crc, const u8 *data, unsigned int length) + for (i = 0; i < words; i++) { +#ifdef __LITTLE_ENDIAN + q = *++p32 ^ crc; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc = t3_le[i3] ^ t2_le[i2] ^ t1_le[i1] ^ t0_le[i0]; +#else + q = *++p32 ^ crc; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc = t3_le[i3] ^ t2_le[i2] ^ t1_le[i1] ^ t0_le[i0]; +#endif + } + + p8 = (u8 *)(++p32); + + for (i = 0; i < end_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_le[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_le[i0] ^ (crc << 8); +#endif + } + + return __le32_to_cpu((__force __le32)crc); +} +#endif + +#if CRC_BE_BITS == 32 +static u32 crc32c_be_body(u32 crc, u8 const *buf, size_t len) { - while (length--) - crc = crc32c_table[(crc ^ *data++) & 0xFFL] ^ (crc >> 8); + const u8 *p8; + const u32 *p32; + size_t init_bytes; + size_t words; + size_t end_bytes; + size_t i; + u32 q; + u8 i0, i1, i2, i3; + + crc = (__force u32) __cpu_to_be32(crc); + + p8 = buf; + p32 = (u32 *)PTR_ALIGN(p8, 4); + init_bytes = min((uintptr_t)p32 - (uintptr_t)p8, len); + words = (len - init_bytes) >> 2; + end_bytes = (len - init_bytes) & 3; + + for (i = 0; i < init_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_be[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_be[i0] ^ (crc << 8); +#endif + } + + p32--; + + for (i = 0; i < words; i++) { +#ifdef __LITTLE_ENDIAN + q = *++p32 ^ crc; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc = t3_be[i3] ^ t2_be[i2] ^ t1_be[i1] ^ t0_be[i0]; +#else + q = *++p32 ^ crc; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc = t3_be[i3] ^ t2_be[i2] ^ t1_be[i1] ^ t0_be[i0]; +#endif + } + + p8 = (u8 *)(++p32); + + for (i = 0; i < end_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_be[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_be[i0] ^ (crc << 8); +#endif + } + + return __be32_to_cpu((__force __be32)crc); +} +#endif + +#if CRC_LE_BITS == 64 +/* slice by 8 algorithm */ +static u32 crc32c_le_body(u32 crc, u8 const *buf, size_t len) +{ + const u8 *p8; + const u32 *p32; + size_t init_bytes; + size_t words; + size_t end_bytes; + size_t i; + u32 q; + u8 i0, i1, i2, i3; + + crc = (__force u32) __cpu_to_le32(crc); + + p8 = buf; + p32 = (u32 *)PTR_ALIGN(p8, 8); + init_bytes = min((uintptr_t)p32 - (uintptr_t)p8, len); + words = (len - init_bytes) >> 3; + end_bytes = (len - init_bytes) & 7; + + for (i = 0; i < init_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_le[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_le[i0] ^ (crc << 8); +#endif + } + + p32--; + + for (i = 0; i < words; i++) { +#ifdef __LITTLE_ENDIAN + q = *++p32 ^ crc; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc = t7_le[i3] ^ t6_le[i2] ^ t5_le[i1] ^ t4_le[i0]; + + q = *++p32; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc ^= t3_le[i3] ^ t2_le[i2] ^ t1_le[i1] ^ t0_le[i0]; +#else + q = *++p32 ^ crc; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc = t7_le[i3] ^ t6_le[i2] ^ t5_le[i1] ^ t4_le[i0]; + + q = *++p32; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc ^= t3_le[i3] ^ t2_le[i2] ^ t1_le[i1] ^ t0_le[i0]; +#endif + } + + p8 = (u8 *)(++p32); + + for (i = 0; i < end_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_le[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_le[i0] ^ (crc << 8); +#endif + } + + return __le32_to_cpu(crc); +} +#endif + +#if CRC_BE_BITS == 64 +static u32 crc32c_be_body(u32 crc, u8 const *buf, size_t len) +{ + const u8 *p8; + const u32 *p32; + size_t init_bytes; + size_t words; + size_t end_bytes; + size_t i; + u32 q; + u8 i0, i1, i2, i3; + + crc = (__force u32) __cpu_to_be32(crc); + + p8 = buf; + p32 = (u32 *)PTR_ALIGN(p8, 8); + init_bytes = min((uintptr_t)p32 - (uintptr_t)p8, len); + words = (len - init_bytes) >> 3; + end_bytes = (len - init_bytes) & 7; + + for (i = 0; i < init_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_be[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_be[i0] ^ (crc << 8); +#endif + } + + p32--; + + for (i = 0; i < words; i++) { +#ifdef __LITTLE_ENDIAN + q = *++p32 ^ crc; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc = t7_be[i3] ^ t6_be[i2] ^ t5_be[i1] ^ t4_be[i0]; + + q = *++p32; + i3 = q; + i2 = q >> 8; + i1 = q >> 16; + i0 = q >> 24; + crc ^= t3_be[i3] ^ t2_be[i2] ^ t1_be[i1] ^ t0_be[i0]; +#else + q = *++p32 ^ crc; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc = t7_be[i3] ^ t6_be[i2] ^ t5_be[i1] ^ t4_be[i0]; + + q = *++p32; + i3 = q >> 24; + i2 = q >> 16; + i1 = q >> 8; + i0 = q; + crc ^= t3_be[i3] ^ t2_be[i2] ^ t1_be[i1] ^ t0_be[i0]; +#endif + } + + p8 = (u8 *)(++p32); + + for (i = 0; i < end_bytes; i++) { +#ifdef __LITTLE_ENDIAN + i0 = *p8++ ^ crc; + crc = t0_be[i0] ^ (crc >> 8); +#else + i0 = *p8++ ^ (crc >> 24); + crc = t0_be[i0] ^ (crc << 8); +#endif + } + + return __be32_to_cpu(crc); +} +#endif + +/** + * crc32c_le() - Calculate bitwise little-endian CRC32c. + * @crc: seed value for computation. ~0 for ext4, sometimes 0 for + * other uses, or the previous crc32c value if computing incrementally. + * @p: pointer to buffer over which CRC is run + * @len: length of buffer @p + */ +static u32 crc32c_le(u32 crc, unsigned char const *p, size_t len) +{ +#if CRC_LE_BITS == 1 + int i; + while (len--) { + crc ^= *p++; + for (i = 0; i < 8; i++) + crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); + } +# elif CRC_LE_BITS == 2 + while (len--) { + crc ^= *p++; + crc = (crc >> 2) ^ t0_le[crc & 0x03]; + crc = (crc >> 2) ^ t0_le[crc & 0x03]; + crc = (crc >> 2) ^ t0_le[crc & 0x03]; + crc = (crc >> 2) ^ t0_le[crc & 0x03]; + } +# elif CRC_LE_BITS == 4 + while (len--) { + crc ^= *p++; + crc = (crc >> 4) ^ t0_le[crc & 0x0f]; + crc = (crc >> 4) ^ t0_le[crc & 0x0f]; + } +# elif CRC_LE_BITS == 8 + while (len--) { + crc ^= *p++; + crc = (crc >> 8) ^ t0_le[crc & 0xff]; + } +# else + crc = crc32c_le_body(crc, p, len); +# endif + return crc; +} +/** + * crc32c_be() - Calculate bitwise big-endian CRC32c. + * @crc: seed value for computation. ~0 for ext4, sometimes 0 for + * other uses, or the previous crc32c value if computing incrementally. + * @p: pointer to buffer over which CRC is run + * @len: length of buffer @p + */ +static u32 crc32c_be(u32 crc, unsigned char const *p, size_t len) +{ +#if CRC_BE_BITS == 1 + int i; + while (len--) { + crc ^= *p++ << 24; + for (i = 0; i < 8; i++) + crc = (crc << 1) ^ + ((crc & 0x80000000) ? CRCPOLY_BE : 0); + } +# elif CRC_BE_BITS == 2 + while (len--) { + crc ^= *p++ << 24; + crc = (crc << 2) ^ t0_be[crc >> 30]; + crc = (crc << 2) ^ t0_be[crc >> 30]; + crc = (crc << 2) ^ t0_be[crc >> 30]; + crc = (crc << 2) ^ t0_be[crc >> 30]; + } +# elif CRC_BE_BITS == 4 + while (len--) { + crc ^= *p++ << 24; + crc = (crc << 4) ^ t0_be[crc >> 28]; + crc = (crc << 4) ^ t0_be[crc >> 28]; + } +# elif CRC_BE_BITS == 8 + while (len--) { + crc ^= *p++ << 24; + crc = (crc << 8) ^ t0_be[crc >> 24]; + } +# else + crc = crc32c_be_body(crc, p, len); +# endif return crc; } @@ -146,7 +482,7 @@ static u32 crc32c(u32 crc, const u8 *data, unsigned int length) * crc using table. */ -static int chksum_init(struct shash_desc *desc) +static int crc32c_init(struct shash_desc *desc) { struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); @@ -156,12 +492,21 @@ static int chksum_init(struct shash_desc *desc) return 0; } +static int crc32c_cra_init(struct crypto_tfm *tfm) +{ + struct chksum_ctx *mctx = crypto_tfm_ctx(tfm); + + mctx->key = ~0; + return 0; +} + +/* Little Endian version of algorithm */ /* * Setting the seed allows arbitrary accumulators and flexible XOR policy * If your algorithm starts with ~0, then XOR with ~0 before you set * the seed. */ -static int chksum_setkey(struct crypto_shash *tfm, const u8 *key, +static int crc32c_le_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct chksum_ctx *mctx = crypto_shash_ctx(tfm); @@ -174,16 +519,16 @@ static int chksum_setkey(struct crypto_shash *tfm, const u8 *key, return 0; } -static int chksum_update(struct shash_desc *desc, const u8 *data, +static int crc32c_le_update(struct shash_desc *desc, const u8 *data, unsigned int length) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); - ctx->crc = crc32c(ctx->crc, data, length); + ctx->crc = crc32c_le(ctx->crc, data, length); return 0; } -static int chksum_final(struct shash_desc *desc, u8 *out) +static int crc32c_le_final(struct shash_desc *desc, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); @@ -191,44 +536,96 @@ static int chksum_final(struct shash_desc *desc, u8 *out) return 0; } -static int __chksum_finup(u32 *crcp, const u8 *data, unsigned int len, u8 *out) +static int __crc32c_le_finup(u32 *crcp, const u8 *data, unsigned int len, + u8 *out) { - *(__le32 *)out = ~cpu_to_le32(crc32c(*crcp, data, len)); + *(__le32 *)out = ~cpu_to_le32(crc32c_le(*crcp, data, len)); return 0; } -static int chksum_finup(struct shash_desc *desc, const u8 *data, +static int crc32c_le_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); - return __chksum_finup(&ctx->crc, data, len, out); + return __crc32c_le_finup(&ctx->crc, data, len, out); } -static int chksum_digest(struct shash_desc *desc, const u8 *data, +static int crc32c_le_digest(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); - return __chksum_finup(&mctx->key, data, length, out); + return __crc32c_le_finup(&mctx->key, data, length, out); } -static int crc32c_cra_init(struct crypto_tfm *tfm) +/* Big Endian version of algorithm */ +/* + * Setting the seed allows arbitrary accumulators and flexible XOR policy + * If your algorithm starts with ~0, then XOR with ~0 before you set + * the seed. + */ +static int crc32c_be_setkey(struct crypto_shash *tfm, const u8 *key, + unsigned int keylen) { - struct chksum_ctx *mctx = crypto_tfm_ctx(tfm); + struct chksum_ctx *mctx = crypto_shash_ctx(tfm); - mctx->key = ~0; + if (keylen != sizeof(mctx->key)) { + crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + mctx->key = be32_to_cpu(*(__be32 *)key); return 0; } -static struct shash_alg alg = { +static int crc32c_be_update(struct shash_desc *desc, const u8 *data, + unsigned int length) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + ctx->crc = crc32c_be(ctx->crc, data, length); + return 0; +} + +static int crc32c_be_final(struct shash_desc *desc, u8 *out) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + *(__be32 *)out = ~cpu_to_be32p(&ctx->crc); + return 0; +} + +static int __crc32c_be_finup(u32 *crcp, const u8 *data, unsigned int len, + u8 *out) +{ + *(__be32 *)out = ~cpu_to_be32(crc32c_be(*crcp, data, len)); + return 0; +} + +static int crc32c_be_finup(struct shash_desc *desc, const u8 *data, + unsigned int len, u8 *out) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + return __crc32c_be_finup(&ctx->crc, data, len, out); +} + +static int crc32c_be_digest(struct shash_desc *desc, const u8 *data, + unsigned int length, u8 *out) +{ + struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); + + return __crc32c_be_finup(&mctx->key, data, length, out); +} + +static struct shash_alg alg_le = { .digestsize = CHKSUM_DIGEST_SIZE, - .setkey = chksum_setkey, - .init = chksum_init, - .update = chksum_update, - .final = chksum_final, - .finup = chksum_finup, - .digest = chksum_digest, + .setkey = crc32c_le_setkey, + .init = crc32c_init, + .update = crc32c_le_update, + .final = crc32c_le_final, + .finup = crc32c_le_finup, + .digest = crc32c_le_digest, .descsize = sizeof(struct chksum_desc_ctx), .base = { .cra_name = "crc32c", @@ -242,14 +639,44 @@ static struct shash_alg alg = { } }; +static struct shash_alg alg_be = { + .digestsize = CHKSUM_DIGEST_SIZE, + .setkey = crc32c_be_setkey, + .init = crc32c_init, + .update = crc32c_be_update, + .final = crc32c_be_final, + .finup = crc32c_be_finup, + .digest = crc32c_be_digest, + .descsize = sizeof(struct chksum_desc_ctx), + .base = { + .cra_name = "crc32c-be", + .cra_driver_name = "crc32c-generic", + .cra_priority = 100, + .cra_blocksize = CHKSUM_BLOCK_SIZE, + .cra_alignmask = 3, + .cra_ctxsize = sizeof(struct chksum_ctx), + .cra_module = THIS_MODULE, + .cra_init = crc32c_cra_init, + } +}; + static int __init crc32c_mod_init(void) { - return crypto_register_shash(&alg); + int ret; + + ret = crypto_register_shash(&alg_le); + if (ret) + return ret; + ret = crypto_register_shash(&alg_be); + if (ret) + crypto_unregister_shash(&alg_le); + return ret; } static void __exit crc32c_mod_fini(void) { - crypto_unregister_shash(&alg); + crypto_unregister_shash(&alg_be); + crypto_unregister_shash(&alg_le); } module_init(crc32c_mod_init); diff --git a/crypto/crc32c_defs.h b/crypto/crc32c_defs.h new file mode 100644 index 0000000..977df8f --- /dev/null +++ b/crypto/crc32c_defs.h @@ -0,0 +1,34 @@ +/* + * This is the CRC32c polynomial, as outlined by Castagnoli. + * x^32+x^28+x^27+x^26+x^25+x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+ + * x^8+x^6+x^0 + */ +#define CRCPOLY_LE 0x82F63B78 +#define CRCPOLY_BE 0x1EDC6F41 + +/* How many bits at a time to use. Valid values are 1, 2, 4, 8, 32 and 64. */ +/* For less performance-sensitive, use 4 */ +#ifndef CRC_LE_BITS +# define CRC_LE_BITS 64 +#endif +#ifndef CRC_BE_BITS +# define CRC_BE_BITS 64 +#endif + +/* + * Little-endian CRC computation. Used with serial bit streams sent + * lsbit-first. Be sure to use cpu_to_le32() to append the computed CRC. + */ +#if CRC_LE_BITS > 64 || CRC_LE_BITS < 1 || CRC_LE_BITS == 16 || \ + CRC_LE_BITS & CRC_LE_BITS-1 +# error "CRC_LE_BITS must be one of {1, 2, 4, 8, 32, 64}" +#endif + +/* + * Big-endian CRC computation. Used with serial bit streams sent + * msbit-first. Be sure to use cpu_to_be32() to append the computed CRC. + */ +#if CRC_BE_BITS > 64 || CRC_BE_BITS < 1 || CRC_BE_BITS == 16 || \ + CRC_BE_BITS & CRC_BE_BITS-1 +# error "CRC_BE_BITS must be one of {1, 2, 4, 8, 32, 64}" +#endif -- To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html