On Fri, Apr 14, 2023, Ackerley Tng wrote: > Sean Christopherson <seanjc@xxxxxxxxxx> writes: > > > On Thu, Apr 13, 2023, Christian Brauner wrote: > > > * by a mount option to tmpfs that makes it act > > > in this restricted manner then you don't need an ioctl() and can get > > > away with regular open calls. Such a tmpfs instance would only create > > > regular, restricted memfds. > > > I'd prefer to not go this route, becuase IIUC, it would require relatively > > invasive changes to shmem code, and IIUC would require similar changes to > > other support backings in the future, e.g. hugetlbfs? And as above, I > > don't think any of the potential use cases need restrictedmem to be a > > uniquely identifiable mount. > > FWIW, I'm starting to look at extending restrictedmem to hugetlbfs and > the separation that the current implementation has is very helpful. Also > helps that hugetlbfs and tmpfs are structured similarly, I guess. > > > One of the goals (hopefully not a pipe dream) is to design restrictmem in > > such a way that extending it to support other backing types isn't terribly > > difficult. In case it's not obvious, most of us working on this stuff > > aren't filesystems experts, and many of us aren't mm experts either. The > > more we (KVM folks for the most part) can leverage existing code to do the > > heavy lifting, the better. > > > After giving myself a bit of a crash course in file systems, would > > something like the below have any chance of (a) working, (b) getting > > merged, and (c) being maintainable? > > > The idea is similar to a stacking filesystem, but instead of stacking, > > restrictedmem hijacks a f_ops and a_ops to create a lightweight shim around > > tmpfs. There are undoubtedly issues and edge cases, I'm just looking for a > > quick "yes, this might be doable" or a "no, that's absolutely bonkers, > > don't try it". > > Not an FS expert by any means, but I did think of approaching it this > way as well! > > "Hijacking" perhaps gives this approach a bit of a negative connotation. Heh, commandeer then. > I thought this is pretty close to subclassing (as in Object > Oriented Programming). When some methods (e.g. fallocate) are called, > restrictedmem does some work, and calls the same method in the > superclass. > > The existing restrictedmem code is a more like instantiating an shmem > object and keeping that object as a field within the restrictedmem > object. > > Some (maybe small) issues I can think of now: > > (1) > > One difficulty with this approach is that other functions may make > assumptions about private_data being of a certain type, or functions may > use private_data. > > I checked and IIUC neither shmem nor hugetlbfs use the private_data > field in the inode's i_mapping (also file's f_mapping). > > But there's fs/buffer.c which uses private_data, although those > functions seem to be used by FSes like ext4 and fat, not memory-backed > FSes. > > We can probably fix this if any backing filesystems of restrictedmem, > like tmpfs and future ones use private_data. Ya, if we go the route of poking into f_ops and stuff, I would want to add WARN_ON_ONCE() hardening of everything that restrictemem wants to "commandeer" ;-) > > static int restrictedmem_file_create(struct file *file) > > { > > struct address_space *mapping = file->f_mapping; > > struct restrictedmem *rm; > > > rm = kzalloc(sizeof(*rm), GFP_KERNEL); > > if (!rm) > > return -ENOMEM; > > > rm->backing_f_ops = file->f_op; > > rm->backing_a_ops = mapping->a_ops; > > rm->file = file; > > We don't really need to do this, since rm->file is already the same as > file, we could just pass the file itself when it's needed Aha! I was working on getting rid of it, but forgot to go back and do another pass. > > init_rwsem(&rm->lock); > > xa_init(&rm->bindings); > > > file->f_flags |= O_LARGEFILE; > > > file->f_op = &restrictedmem_fops; > > mapping->a_ops = &restrictedmem_aops; > > I think we probably have to override inode_operations as well, because > otherwise other methods would become available to a restrictedmem file > (like link, unlink, mkdir, tmpfile). Or maybe that's a feature instead > of a bug. I think we want those? What we want to restrict are operations that require read/write/execute access to the file, everything else should be ok. fallocate() is a special case because restrictmem needs to tell KVM to unmap the memory when a hole is punched. I assume ->setattr() needs similar treatment to handle ftruncate()? I'd love to hear Christian's input on this aspect of things. > > if (WARN_ON_ONCE(file->private_data)) { > > err = -EEXIST; > > goto err_fd; > > } > > Did you intend this as a check that the backing filesystem isn't using > the private_data field in the mapping? > > I think you meant file->f_mapping->private_data. Ya, sounds right. I should have added disclaimers that (a) I wrote this quite quickly and (b) it's compile tested only at this point. > On this note, we will probably have to fix things whenever any backing > filesystems need the private_data field. Yep. > > f = fdget_raw(mount_fd); > > if (!f.file) > > return -EBADF; ... > > /* > > * The filesystem must be mounted no-execute, executing from guest > > * private memory in the host is nonsensical and unsafe. > > */ > > if (!(mnt->mnt_sb->s_iflags & SB_I_NOEXEC)) > > goto out; Looking at this more closely, I don't think we need to require NOEXEC, things like like execve() should get squashed by virtue of not providing any read/write implementations. And dropping my misguided NOEXEC requirement means there's no reason to disallow using the kernel internal mount.