Re: [PATCH] [RFC] Trigger retry from fault vm operation

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, May 11, 2021 at 4:34 PM Matthew Wilcox <willy@xxxxxxxxxxxxx> wrote:
> On Tue, May 11, 2021 at 04:01:13PM +0200, Andreas Gruenbacher wrote:
> > we have a locking problem in gfs2 that I don't have a proper solution for, so
> > I'm looking for suggestions.
> >
> > What's happening is that a page fault triggers during a read or write
> > operation, while we're holding a glock (the cluster-wide gfs2 inode
> > lock), and the page fault requires another glock.  We can recognize and
> > handle the case when both glocks are the same, but when the page fault requires
> > another glock, there is a chance that taking that other glock would deadlock.
>
> So we're looking at something like one file on a gfs2 filesystem being
> mmaped() and then doing read() or write() to another gfs2 file with the
> mmaped address being the passed to read()/write()?

Yes, those kinds of scenarios. Here's an example that Jan Kara came up with:

Two independent processes P1, P2. Two files F1, F2, and two mappings M1, M2
where M1 is a mapping of F1, M2 is a mapping of F2. Now P1 does DIO to F1
with M2 as a buffer, P2 does DIO to F2 with M1 as a buffer. They can race
like:

P1                                      P2
read()                                  read()
  gfs2_file_read_iter()                   gfs2_file_read_iter()
    gfs2_file_direct_read()                 gfs2_file_direct_read()
      locks glock of F1                       locks glock of F2
      iomap_dio_rw()                          iomap_dio_rw()
        bio_iov_iter_get_pages()                bio_iov_iter_get_pages()
          <fault in M2>                           <fault in M1>
            gfs2_fault()                            gfs2_fault()
              tries to grab glock of F2               tries to grab glock of F1

With cluster-wide locks, we can obviously end up with distributed
deadlock scenarios as well, of course.

> Have you looked at iov_iter_fault_in_readable() as a solution to
> your locking order?  That way, you bring the mmaped page in first
> (see generic_perform_write()).

Yes. The problem there is that we need to hold the inode glock from
->iomap_begin to ->iomap_end; that's what guarantees that the mapping
returned by ->iomap_begin remains valid.

> > When we realize that we may not be able to take the other glock in gfs2_fault,
> > we need to communicate that to the read or write operation, which will then
> > drop and re-acquire the "outer" glock and retry.  However, there doesn't seem
> > to be a good way to do that; we can only indicate that a page fault should fail
> > by returning VM_FAULT_SIGBUS or similar; that will then be mapped to -EFAULT.
> > We'd need something like VM_FAULT_RESTART that can be mapped to -EBUSY so that
> > we can tell the retry case apart from genuine -EFAULT errors.
>
> We do have VM_FAULT_RETRY ... does that retry at the wrong level?

There's also VM_FAULT_NOPAGE, but that only triggers a retry at the VM
level and doesn't propagate out far enough.

My impression is that VM_FAULT_RETRY is similar to VM_FAULT_NOPAGE
except that it allows the lock dropping optimization implemented in
maybe_unlock_mmap_for_io(). That error code can also only be used when
FAULT_FLAG_ALLOW_RETRY is set it seems. Correct me if I'm getting this
wrong.

Thanks,
Andreas




[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux