Re: High kmalloc-32 slab cache consumption with 10k containers

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Mon, Apr 05, 2021 at 11:08:26AM -0700, Yang Shi wrote:
> On Sun, Apr 4, 2021 at 10:49 PM Bharata B Rao <bharata@xxxxxxxxxxxxx> wrote:
> >
> > Hi,
> >
> > When running 10000 (more-or-less-empty-)containers on a bare-metal Power9
> > server(160 CPUs, 2 NUMA nodes, 256G memory), it is seen that memory
> > consumption increases quite a lot (around 172G) when the containers are
> > running. Most of it comes from slab (149G) and within slab, the majority of
> > it comes from kmalloc-32 cache (102G)
> >
> > The major allocator of kmalloc-32 slab cache happens to be the list_head
> > allocations of list_lru_one list. These lists are created whenever a
> > FS mount happens. Specially two such lists are registered by alloc_super(),
> > one for dentry and another for inode shrinker list. And these lists
> > are created for all possible NUMA nodes and for all given memcgs
> > (memcg_nr_cache_ids to be particular)
> >
> > If,
> >
> > A = Nr allocation request per mount: 2 (one for dentry and inode list)
> > B = Nr NUMA possible nodes
> > C = memcg_nr_cache_ids
> > D = size of each kmalloc-32 object: 32 bytes,
> >
> > then for every mount, the amount of memory consumed by kmalloc-32 slab
> > cache for list_lru creation is A*B*C*D bytes.
> 
> Yes, this is exactly what the current implementation does.
> 
> >
> > Following factors contribute to the excessive allocations:
> >
> > - Lists are created for possible NUMA nodes.
> 
> Yes, because filesystem caches (dentry and inode) are NUMA aware.

True, but creating lists for possible nodes as against online nodes
can hurt platforms where possible is typically higher than online.

> 
> > - memcg_nr_cache_ids grows in bulk (see memcg_alloc_cache_id() and additional
> >   list_lrus are created when it grows. Thus we end up creating list_lru_one
> >   list_heads even for those memcgs which are yet to be created.
> >   For example, when 10000 memcgs are created, memcg_nr_cache_ids reach
> >   a value of 12286.
> > - When a memcg goes offline, the list elements are drained to the parent
> >   memcg, but the list_head entry remains.
> > - The lists are destroyed only when the FS is unmounted. So list_heads
> >   for non-existing memcgs remain and continue to contribute to the
> >   kmalloc-32 allocation. This is presumably done for performance
> >   reason as they get reused when new memcgs are created, but they end up
> >   consuming slab memory until then.
> 
> The current implementation has list_lrus attached with super_block. So
> the list can't be freed until the super block is unmounted.
> 
> I'm looking into consolidating list_lrus more closely with memcgs. It
> means the list_lrus will have the same life cycles as memcgs rather
> than filesystems. This may be able to improve some. But I'm supposed
> the filesystem will be unmounted once the container exits and the
> memcgs will get offlined for your usecase.

Yes, but when the containers are still running, the lists that get
created for non-existing memcgs and non-relavent memcgs are the main
cause of increased memory consumption.

> 
> > - In case of containers, a few file systems get mounted and are specific
> >   to the container namespace and hence to a particular memcg, but we
> >   end up creating lists for all the memcgs.
> 
> Yes, because the kernel is *NOT* aware of containers.
> 
> >   As an example, if 7 FS mounts are done for every container and when
> >   10k containers are created, we end up creating 2*7*12286 list_lru_one
> >   lists for each NUMA node. It appears that no elements will get added
> >   to other than 2*7=14 of them in the case of containers.
> >
> > One straight forward way to prevent this excessive list_lru_one
> > allocations is to limit the list_lru_one creation only to the
> > relevant memcg. However I don't see an easy way to figure out
> > that relevant memcg from FS mount path (alloc_super())
> >
> > As an alternative approach, I have this below hack that does lazy
> > list_lru creation. The memcg-specific list is created and initialized
> > only when there is a request to add an element to that particular
> > list. Though I am not sure about the full impact of this change
> > on the owners of the lists and also the performance impact of this,
> > the overall savings look good.
> 
> It is fine to reduce the memory consumption for your usecase, but I'm
> not sure if this would incur any noticeable overhead for vfs
> operations since list_lru_add() should be called quite often, but it
> just needs to allocate the list for once (for each memcg +
> filesystem), so the overhead might be fine.

Let me run some benchmarks to measure the overhead. Any particular
benchmark suggestion?
 
> 
> And I'm wondering how much memory can be saved for real life workload.
> I don't expect most containers are idle in production environments.

I don't think kmalloc-32 slab cache memory consumption from list_lru
would be any different for real life workload compared to idle containers.

> 
> Added some more memcg/list_lru experts in this loop, they may have better ideas.

Thanks.

Regards,
Bharata.



[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux