Re: [PATCH] fs: fix a data race in i_size_write/i_size_read

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, 19 Feb 2020 at 06:23, Al Viro <viro@xxxxxxxxxxxxxxxxxx> wrote:
>
> On Wed, Feb 19, 2020 at 12:08:40AM -0500, Qian Cai wrote:
> >
> >
> > > On Feb 18, 2020, at 11:52 PM, Al Viro <viro@xxxxxxxxxxxxxxxxxx> wrote:
> > >
> > > If aligned 64bit stores on 64bit host (note the BITS_PER_LONG ifdefs) end up
> > > being split, the kernel is FUBAR anyway.  Details, please - how could that
> > > end up happening?
> >
> > My understanding is the compiler might decide to split the load into saying two 4-byte loads. Then, we might have,
> >
> > Load1
> > Store
> > Load2
> >
> > where the load value could be a garbage. Also, Marco (the KCSAN maintainer) who knew more of compiler than me mentioned that there is no guarantee that the store will not be split either. Thus, the WRITE_ONCE().
> >

In theory, yes. But by now we're aware of the current convention of
assuming plain aligned writes up to word-size are atomic (which KCSAN
respects with default Kconfig).

>         I would suggest
> * if some compiler does that, ask the persons responsible for that
> "optimization" which flags should be used to disable it.
> * if they fail to provide such, educate them regarding the
> usefulness of their idea
> * if that does not help, don't use the bloody piece of garbage.
>
>         Again, is that pure theory (because I can't come up with
> any reason why splitting a 32bit load would be any less legitimate
> than doing the same to a 64bit one on a 64bit architecture),
> or is there anything that really would pull that off?

Right. In reality, for mainstream architectures, it appears quite unlikely.

There may be other valid reasons, such as documenting the fact the
write can happen concurrently with loads.

Let's assume the WRITE_ONCE can be dropped.

The load is a different story. While load tearing may not be an issue,
it's more likely that other optimizations can break the code. For
example load fusing can break code that expects repeated loads in a
loop. E.g. I found these uses of i_size_read in loops:

git grep -E '(for|while) \(.*i_size_read'
fs/ocfs2/dir.c: while (ctx->pos < i_size_read(inode)) {
fs/ocfs2/dir.c:                 for (i = 0; i < i_size_read(inode) &&
i < offset; ) {
fs/ocfs2/dir.c: while (ctx->pos < i_size_read(inode)) {
fs/ocfs2/dir.c:         while (ctx->pos < i_size_read(inode)
fs/squashfs/dir.c:      while (length < i_size_read(inode)) {
fs/squashfs/namei.c:    while (length < i_size_read(dir)) {

Can i_size writes happen concurrently, and if so will these break if
the compiler decides to just do i_size_read's load once, and keep the
result in a register?

Thanks,
-- Marco



[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux