Re: [PATCH v8 14/20] fscrypt: allow unprivileged users to add/remove keys for v2 policies

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Mon, Aug 05, 2019 at 09:25:15AM -0700, Eric Biggers wrote:
> From: Eric Biggers <ebiggers@xxxxxxxxxx>
> 
> Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY
> ioctls to be used by non-root users to add and remove encryption keys
> from the filesystem-level crypto keyrings, subject to limitations.
> 
> Motivation: while privileged fscrypt key management is sufficient for
> some users (e.g. Android and Chromium OS, where a privileged process
> manages all keys), the old API by design also allows non-root users to
> set up and use encrypted directories, and we don't want to regress on
> that.  Especially, we don't want to force users to continue using the
> old API, running into the visibility mismatch between files and keyrings
> and being unable to "lock" encrypted directories.
> 
> Intuitively, the ioctls have to be privileged since they manipulate
> filesystem-level state.  However, it's actually safe to make them
> unprivileged if we very carefully enforce some specific limitations.
> 
> First, each key must be identified by a cryptographic hash so that a
> user can't add the wrong key for another user's files.  For v2
> encryption policies, we use the key_identifier for this.  v1 policies
> don't have this, so managing keys for them remains privileged.
> 
> Second, each key a user adds is charged to their quota for the keyrings
> service.  Thus, a user can't exhaust memory by adding a huge number of
> keys.  By default each non-root user is allowed up to 200 keys; this can
> be changed using the existing sysctl 'kernel.keys.maxkeys'.
> 
> Third, if multiple users add the same key, we keep track of those users
> of the key (of which there remains a single copy), and won't really
> remove the key, i.e. "lock" the encrypted files, until all those users
> have removed it.  This prevents denial of service attacks that would be
> possible under simpler schemes, such allowing the first user who added a
> key to remove it -- since that could be a malicious user who has
> compromised the key.  Of course, encryption keys should be kept secret,
> but the idea is that using encryption should never be *less* secure than
> not using encryption, even if your key was compromised.
> 
> We tolerate that a user will be unable to really remove a key, i.e.
> unable to "lock" their encrypted files, if another user has added the
> same key.  But in a sense, this is actually a good thing because it will
> avoid providing a false notion of security where a key appears to have
> been removed when actually it's still in memory, available to any
> attacker who compromises the operating system kernel.
> 
> Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx>

Looks good.  I'd probably would have used either "mk_secret_sem" or
"mk->mk_secret_sem" in the comments, instead of "->mk_securet_sem",
but that's just a personal style preference.  Since you consistently
used the latter, I assume that's a deliberate choice, which is fine.

Feel free to add:

Reviewed-by: Theodore Ts'o <tytso@xxxxxxx>




[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux