On Tue, May 21, 2019 at 01:34:47PM +0200, Christian Brauner wrote: > This adds the close_range() syscall. It allows to efficiently close a range > of file descriptors up to all file descriptors of a calling task. > > The syscall came up in a recent discussion around the new mount API and > making new file descriptor types cloexec by default. During this > discussion, Al suggested the close_range() syscall (cf. [1]). Note, a > syscall in this manner has been requested by various people over time. > > First, it helps to close all file descriptors of an exec()ing task. This > can be done safely via (quoting Al's example from [1] verbatim): > > /* that exec is sensitive */ > unshare(CLONE_FILES); > /* we don't want anything past stderr here */ > close_range(3, ~0U); > execve(....); > > The code snippet above is one way of working around the problem that file > descriptors are not cloexec by default. This is aggravated by the fact that > we can't just switch them over without massively regressing userspace. For > a whole class of programs having an in-kernel method of closing all file > descriptors is very helpful (e.g. demons, service managers, programming > language standard libraries, container managers etc.). > (Please note, unshare(CLONE_FILES) should only be needed if the calling > task is multi-threaded and shares the file descriptor table with another > thread in which case two threads could race with one thread allocating > file descriptors and the other one closing them via close_range(). For the > general case close_range() before the execve() is sufficient.) > > Second, it allows userspace to avoid implementing closing all file > descriptors by parsing through /proc/<pid>/fd/* and calling close() on each > file descriptor. From looking at various large(ish) userspace code bases > this or similar patterns are very common in: > - service managers (cf. [4]) > - libcs (cf. [6]) > - container runtimes (cf. [5]) > - programming language runtimes/standard libraries > - Python (cf. [2]) > - Rust (cf. [7], [8]) > As Dmitry pointed out there's even a long-standing glibc bug about missing > kernel support for this task (cf. [3]). > In addition, the syscall will also work for tasks that do not have procfs > mounted and on kernels that do not have procfs support compiled in. In such > situations the only way to make sure that all file descriptors are closed > is to call close() on each file descriptor up to UINT_MAX or RLIMIT_NOFILE, > OPEN_MAX trickery (cf. comment [8] on Rust). > > The performance is striking. For good measure, comparing the following > simple close_all_fds() userspace implementation that is essentially just > glibc's version in [6]: > > static int close_all_fds(void) > { > DIR *dir; > struct dirent *direntp; > > dir = opendir("/proc/self/fd"); > if (!dir) > return -1; > > while ((direntp = readdir(dir))) { > int fd; > if (strcmp(direntp->d_name, ".") == 0) > continue; > if (strcmp(direntp->d_name, "..") == 0) > continue; > fd = atoi(direntp->d_name); > if (fd == 0 || fd == 1 || fd == 2) > continue; > close(fd); > } > > closedir(dir); /* cannot fail */ > return 0; > } > > to close_range() yields: > 1. closing 4 open files: > - close_all_fds(): ~280 us > - close_range(): ~24 us > > 2. closing 1000 open files: > - close_all_fds(): ~5000 us > - close_range(): ~800 us > > close_range() is designed to allow for some flexibility. Specifically, it > does not simply always close all open file descriptors of a task. Instead, > callers can specify an upper bound. > This is e.g. useful for scenarios where specific file descriptors are > created with well-known numbers that are supposed to be excluded from > getting closed. > For extra paranoia close_range() comes with a flags argument. This can e.g. > be used to implement extension. Once can imagine userspace wanting to stop > at the first error instead of ignoring errors under certain circumstances. > There might be other valid ideas in the future. In any case, a flag > argument doesn't hurt and keeps us on the safe side. > > >From an implementation side this is kept rather dumb. It saw some input > from David and Jann but all nonsense is obviously my own! > - Errors to close file descriptors are currently ignored. (Could be changed > by setting a flag in the future if needed.) > - __close_range() is a rather simplistic wrapper around __close_fd(). > My reasoning behind this is based on the nature of how __close_fd() needs > to release an fd. But maybe I misunderstood specifics: > We take the files_lock and rcu-dereference the fdtable of the calling > task, we find the entry in the fdtable, get the file and need to release > files_lock before calling filp_close(). > In the meantime the fdtable might have been altered so we can't just > retake the spinlock and keep the old rcu-reference of the fdtable > around. Instead we need to grab a fresh reference to the fdtable. > If my reasoning is correct then there's really no point in fancyfying > __close_range(): We just need to rcu-dereference the fdtable of the > calling task once to cap the max_fd value correctly and then go on > calling __close_fd() in a loop. > +/** > + * __close_range() - Close all file descriptors in a given range. > + * > + * @fd: starting file descriptor to close > + * @max_fd: last file descriptor to close > + * > + * This closes a range of file descriptors. All file descriptors > + * from @fd up to and including @max_fd are closed. > + */ > +int __close_range(struct files_struct *files, unsigned fd, unsigned max_fd) > +{ > + unsigned int cur_max; > + > + if (fd > max_fd) > + return -EINVAL; > + > + rcu_read_lock(); > + cur_max = files_fdtable(files)->max_fds; > + rcu_read_unlock(); > + > + /* cap to last valid index into fdtable */ > + if (max_fd >= cur_max) > + max_fd = cur_max - 1; > + > + while (fd <= max_fd) > + __close_fd(files, fd++); > + > + return 0; > +} Umm... That's going to be very painful if you dup2() something to MAX_INT and then run that; roughly 2G iterations of bouncing ->file_lock up and down, without anything that would yield CPU in process. If anything, I would suggest something like fd = *start_fd; grab the lock fdt = files_fdtable(files); more: look for the next eviction candidate in ->open_fds, starting at fd if there's none up to max_fd drop the lock return NULL *start_fd = fd + 1; if the fscker is really opened and not just reserved rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); drop the lock return the file we'd got if (unlikely(need_resched())) drop lock cond_resched(); grab lock fdt = files_fdtable(files); goto more; with the main loop being basically while ((file = pick_next(files, &start_fd, max_fd)) != NULL) filp_close(file, files);