Re: [PATCH] Documenting the crash-recovery guarantees of Linux file systems

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi,

This is a good read.

I have a few nits below... if you are interested.


On 3/5/19 6:59 PM, Jayashree wrote:
>  In this file, we document the crash-recovery guarantees
>  provided by four Linux file systems - xfs, ext4, F2FS and btrfs. We also
>  present Dave Chinner's proposal of Strictly-Ordered Metadata Consistency
>  (SOMC), which is provided by xfs. It is not clear to us if other file systems
>  provide SOMC; we would be happy to modify the document if file-system
>  developers claim that their system provides (or aims to provide) SOMC.
> 
> Signed-off-by: Jayashree Mohan <jaya@xxxxxxxxxxxxx>
> ---
>  .../filesystems/crash-recovery-guarantees.txt      | 173 +++++++++++++++++++++
>  1 file changed, 173 insertions(+)
>  create mode 100644 Documentation/filesystems/crash-recovery-guarantees.txt
> 
> diff --git a/Documentation/filesystems/crash-recovery-guarantees.txt b/Documentation/filesystems/crash-recovery-guarantees.txt
> new file mode 100644
> index 0000000..4d1a9c6b
> --- /dev/null
> +++ b/Documentation/filesystems/crash-recovery-guarantees.txt
> @@ -0,0 +1,173 @@
> +=====================================================================
> +File System Crash-Recovery Guarantees
> +=====================================================================
> +Linux file systems provide certain guarantees to user-space
> +applications about what happens to their data if the system crashes
> +(due to power loss or kernel panic). These are termed crash-recovery
> +guarantees.
> +
> +Crash-recovery guarantees only pertain to data or metadata that has
> +been explicitly persisted to storage with fsync(), fdatasync(), or
> +sync() system calls. By default, write(), mkdir(), and other
> +file-system related system calls only affect the in-memory state of
> +the file system.
> +
> +The crash-recovery guarantees provided by most Linux file systems are
> +significantly stronger than what is required by POSIX. POSIX is vague,
> +even allowing fsync() to do nothing (Mac OSX takes advantage of
> +this). However, the guarantees provided by file systems are not
> +documented, and vary between file systems. This document seeks to
> +describe the current crash-recovery guarantees provided by major Linux
> +file systems.
> +
> +What does the fsync() operation guarantee?
> +----------------------------------------------------
> +fsync() operation is meant to force the physical write of data
> +corresponding to a file from the buffer cache, along with the file
> +metadata. Note that the guarantees mentioned for each file system below
> +are in addition to the ones provided by POSIX.
> +
> +POSIX
> +-----
> +fsync(file) : Flushes the data and metadata associated with the
> +file. However, if the directory entry for the file has not been
> +previously persisted, or has been modified, it is not guaranteed to be
> +persisted by the fsync of the file [1]. What this means is, if a file
> +is newly created, you will have to fsync(parent directory) in addition
> +to fsync(file) in order to ensure that the file data has safely
> +reached the disk.
> +
> +fsync(dir) : Flushes directory data and directory entries. However if
> +you created a new file within the directory and wrote data to the
> +file, then the file data is not guaranteed to be persisted, unless an
> +explicit fsync() is issued on the file.
> +
> +ext4
> +-----
> +fsync(file) : Ensures that a newly created file is persisted (no need
> +to explicitly persist the parent directory). However, if you create
> +multiple names of the file (hard links), then they are not guaranteed
> +to persist unless each one of the hard links are persisted [2].
> +
> +fsync(dir) : All file names within the persisted directory will exist,
> +but does not guarantee file data.
> +
> +btrfs
> +------
> +fsync(file) : Ensures that the newly created file is persisted, along
> +with all its hard links. You do not need to persist individual hard
> +links to the file.
> +
> +fsync(dir) : All the file names within the directory persist. All the
> +rename and unlink operations within the directory are persisted. Due
> +to the design choices made by btrfs, fsync of a directory could lead
> +to an iterative fsync on sub-directories, thereby requiring a full
> +file system commit. So btrfs does not advocate persisting directories
> +[2].
> +
> +fsync(symlink)
> +-------------
> +A symlink inode cannot be directly opened for IO, which means there is
> +no such thing as fsync of a symlink [3]. You could be tricked by the
> +fact that open and fsync of a symlink succeeds without returning a
> +error, but what happens in reality is as follows.
> +
> +Suppose we have a symlink “foo”, which points to the file “A/bar”
> +
> +fd = open(“foo”, O_CREAT | O_RDWR)
> +fsync(fd)
> +
> +Both the above operations succeed, but if you crash after fsync, the
> +symlink could be still missing.
> +
> +When you try to open the symlink “foo”, you are actually trying to
> +open the file that the symlink resolves to, which in this case is
> +“A/bar”. When you fsync the inode returned by the open system call, you
> +are actually persisting the file “A/bar” and not the symlink. Note
> +that if the file “A/bar” does not exist and you try the open the
> +symlink “foo” without the O_CREAT flag, then file open will fail. To
> +obtain the file descriptor associated with the symlink inode, you
> +could open the symlink using “O_PATH | O_NOFOLLOW” flags. However, the
> +file descriptor obtained this way can be only used to indicate a
> +location in the file-system tree and to perform operations that act
> +purely at the file descriptor level. Operations like read(), write(),
> +fsync() etc cannot be performed on such file descriptors.
> +
> +Bottomline : You cannot fsync() a symlink.
> +
> +fsync(special files)
> +--------------------
> +Special files in Linux include block and character device files
> +(created using mknod), FIFO (created using mkfifo) etc. Just like the
> +behavior of fsync on symlinks described above, these special files do
> +not have a fsync function defined. Similar to symlinks, you

I would say "not have an fsync function defined."

> +cannot fsync a special file [4].
> +
> +
> +Strictly Ordered Metadata Consistency
> +-------------------------------------
> +With each file system providing varying levels of persistence
> +guarantees, a consensus in this regard, will benefit application
> +developers to work with certain fixed assumptions about file system
> +guarantees. Dave Chinner proposed a unified model called the
> +Strictly Ordered Metadata Consistency (SOMC) [5].
> +
> +Under this scheme, the file system guarantees to persist all previous
> +dependent modifications to the object upon fsync().  If you fsync() an
> +inode, it will persist all the changes required to reference the inode
> +and its data. SOMC can be defined as follows [6]:
> +
> +If op1 precedes op2 in program order (in-memory execution order), and
> +op1 and op2 share a dependency, then op2 must not be observed by a
> +user after recovery without also observing op1.
> +
> +Unfortunately, SOMC's definition depends upon whether two operations
> +share a dependency, which is file-system specific. A developer would
> +need to understand file-system internals to know if SOMC would order
> +one operation before another. It is worth noting that a file system
> +can be crash-consistent (according to POSIX), without providing SOMC
> +[7].
> +
> +Example
> +-------
> +touch A/foo
> +echo “hello” >  A/foo
> +sync
> +
> +mv A/foo A/bar
> +echo “world” > A/foo
> +fsync A/foo
> +CRASH
> +
> +What would you expect on recovery, if the file system crashed after
> +the final fsync returned successfully?
> +
> +Non SOMC file systems will not persist the file

  Non-SOMC

> +A/bar because it was not explicitly fsync-ed. But this means, you will
> +find only the file A/foo with data “world” after crash, thereby losing
> +the previously persisted file with data “hello” [8]. You will need to
> +explicitly persist the directory A to ensure the rename operation is
> +safely persisted on disk.
> +
> +Under SOMC, to correctly reference the new inode via A/foo, 
> +the previous rename operation must persist as well. Therefore, 
> +fsync() of A/foo will persist the renamed file A/bar as well. 
> +On recovery you will find both A/bar (with data “hello”)
> +and A/foo (with data “world”).
> +
> +It is noteworthy that xfs, ext4, F2FS (when mounted with fsync_mode=strict) 
> +and btrfs provide SOMC like behaviour in this particular example.

                     SOMC-like

> +However, on document, only XFS claims to provide SOMC. 
> +It is not clear if ext4, F2FS and btrfs provide strictly ordered 
> +metadata consistency.
> +
> +--------------------------------------------------------
> +[1] http://man7.org/linux/man-pages/man2/fdatasync.2.html
> +[2] https://www.spinics.net/lists/linux-btrfs/msg77340.html
> +[3] https://www.spinics.net/lists/fstests/msg09370.html
> +[4] https://bugzilla.kernel.org/show_bug.cgi?id=202485
> +[5] https://marc.info/?l=fstests&m=155010885626284&w=2
> +[6] https://marc.info/?l=fstests&m=155011123126916&w=2
> +[7] https://www.spinics.net/lists/fstests/msg09379.html
> +[8] https://patchwork.kernel.org/patch/10132305/
> +
> 


-- 
~Randy



[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux