On 09.10.2018 19:45, Laurent Vivier wrote: > Le 09/10/2018 à 18:15, Kirill Tkhai a écrit : >> On 09.10.2018 13:37, Laurent Vivier wrote: >>> This patch allows to have a different binfmt_misc configuration >>> for each new user namespace. By default, the binfmt_misc configuration >>> is the one of the previous level, but if the binfmt_misc filesystem is >>> mounted in the new namespace a new empty binfmt instance is created and >>> used in this namespace. >>> >>> For instance, using "unshare" we can start a chroot of an another >>> architecture and configure the binfmt_misc interpreter without being root >>> to run the binaries in this chroot. >>> >>> Signed-off-by: Laurent Vivier <laurent@xxxxxxxxx> >>> --- >>> fs/binfmt_misc.c | 106 ++++++++++++++++++++++++--------- >>> include/linux/user_namespace.h | 13 ++++ >>> kernel/user.c | 13 ++++ >>> kernel/user_namespace.c | 3 + >>> 4 files changed, 107 insertions(+), 28 deletions(-) >>> >>> diff --git a/fs/binfmt_misc.c b/fs/binfmt_misc.c >>> index aa4a7a23ff99..1e0029d097d9 100644 >>> --- a/fs/binfmt_misc.c >>> +++ b/fs/binfmt_misc.c > ... >>> @@ -80,18 +74,32 @@ static int entry_count; >>> */ >>> #define MAX_REGISTER_LENGTH 1920 >>> >>> +static struct binfmt_namespace *binfmt_ns(struct user_namespace *ns) >>> +{ >>> + struct binfmt_namespace *b_ns; >>> + >>> + while (ns) { >>> + b_ns = READ_ONCE(ns->binfmt_ns); >>> + if (b_ns) >>> + return b_ns; >>> + ns = ns->parent; >>> + } >>> + WARN_ON_ONCE(1); >>> + return NULL; >>> +} >>> + > ... >>> @@ -823,12 +847,34 @@ static const struct super_operations s_ops = { >>> static int bm_fill_super(struct super_block *sb, void *data, int silent) >>> { >>> int err; >>> + struct user_namespace *ns = sb->s_user_ns; >>> static const struct tree_descr bm_files[] = { >>> [2] = {"status", &bm_status_operations, S_IWUSR|S_IRUGO}, >>> [3] = {"register", &bm_register_operations, S_IWUSR}, >>> /* last one */ {""} >>> }; >>> >>> + /* create a new binfmt namespace >>> + * if we are not in the first user namespace >>> + * but the binfmt namespace is the first one >>> + */ >>> + if (READ_ONCE(ns->binfmt_ns) == NULL) { >>> + struct binfmt_namespace *new_ns; >>> + >>> + new_ns = kmalloc(sizeof(struct binfmt_namespace), >>> + GFP_KERNEL); >>> + if (new_ns == NULL) >>> + return -ENOMEM; >>> + INIT_LIST_HEAD(&new_ns->entries); >>> + new_ns->enabled = 1; >>> + rwlock_init(&new_ns->entries_lock); >>> + new_ns->bm_mnt = NULL; >>> + new_ns->entry_count = 0; >>> + /* ensure new_ns is completely initialized before sharing it */ >>> + smp_wmb(); >> >> (I haven't dived into patch logic, here just small barrier remark from quick sight). >> smp_wmb() has no sense without paired smp_rmb() on the read side. Possible, >> you want something like below in read hunk: >> >> + b_ns = READ_ONCE(ns->binfmt_ns); >> + if (b_ns) { >> + smp_rmb(); >> + return b_ns; >> + } >> >> > > The write barrier is here to ensure the structure is fully written > before we set the pointer. > > I don't understand how read barrier can change something at this level, > IMHO the couple WRITE_ONCE()/READ_ONCE() should be enough to ensure we > have correctly initialized the pointer and the structure when we read > the pointer back. > > I think the pointer itself is the "barrier" to access the memory > modified before. smp_rmb() guarantees you see stores in the order you want. If you have: [cpu0] [cpu1] new_ns->entry_count = 0; smp_wmb(); WRITE_ONCE(ns->binfmt_ns, new_ns); b_ns = READ_ONCE(ns->binfmt_ns); smp_rmb(); <access b_ns->entry_count> smp_rmb() guarantees you see true entry_count on the cpu1. Without smp_rmb() you may see old value of new_ns->entry_count. See Documentation/memory-barriers.txt